000 07675nam a22004693i 4500
001 EBC3017677
003 MiAaPQ
005 20191126084506.0
006 m o d |
007 cr cnu||||||||
008 191125s2010 xx o ||||0 eng d
020 _a9781617619519
_q(electronic bk.)
020 _z9781590338551
035 _a(MiAaPQ)EBC3017677
035 _a(Au-PeEL)EBL3017677
035 _a(CaPaEBR)ebr10654648
035 _a(OCoLC)923653238
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aTA1675.A383 2010
100 1 _aArkin, William T.
_923143
245 1 0 _aAdvances in Laser and Optics Research. Volume 3.
264 1 _aHauppauge :
_bNova Science Publishers, Incorporated,
_c2010.
264 4 _c©2010.
300 _a1 online resource (208 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aAdvances in Laser and Optics Research ;
_vv.3
505 0 _aIntro -- ADVANCES IN LASER AND OPTICS RESEARCH, VOLUME 3 -- ADVANCES IN LASER AND OPTICS RESEARCH, VOLUME 3 -- LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA -- CONTENTS -- PREFACE -- Chapter 1ADVANCES IN COPPER LASER TECHNOLOGY:KINETIC ENHANCEMENT -- 1. Introduction -- 2. Background -- 2.1. Role of Pre-Pulse Electron Density -- 2.2. Engineering the Pre-Pulse Electron Density -- 3. Operating Characteristics of KE-CVLs -- 3.1. Output Power and Efficiency -- 3.2. Pulse Rate Scaling of KE-CVLS -- 3.3. Specific Average-Output Power Scaling -- 3.4. Temporal Characteristics of KE-CVL Output -- 3.5. Spatial Characteristics of KE-CVL Output -- 3.6. High Beam Quality Operation of KE-CVLs -- 4. Diagnostics of Kinetically Enhanced CVLs -- 4.1. Copper Density Measurement -- 4.2. Computer Modelling of KE-CVLs -- 5. Operation of KE-CVLS in Oscillator-Amplifier Configuration -- 6. High Power UV Generation from KE-CVLs -- Acknowledgments -- References -- Chapter2MERGINGQUANTUMTHEORYINTOCLASSICALPHYSICS -- Abstract -- 1.Introduction -- 2.ComparisonofClassicalandQuantumElectrodynamics -- 2.1.ModesoftheElectromagneticWaves -- 2.2.ElementaryLight-MatterInteractioninClassicalOptics -- 2.3.TheClassicalZeroPointField -- 2.4.TheZeroPointFieldandtheDetectionofLowLevelLight -- 2.5.SpontaneousEmissionandAbsorption:Einstein'sCoefficients -- 2.6.MechanismofEmissionandAbsorptionofaPhoton -- 2.7.ComparisonofQuantumandClassicalElectrodynamics -- 3.SomePropertiesofNonlinearWaves:The(3+0)DSolitons -- 3.1.TheFilamentsofLight -- 3.2.PerturbationofaFilamentbyaMagneticNonlinearity -- 4.TentativeSettingofaClassicalTheoryIncludingtheImpor-tantQuantumResults -- 4.1.IsMatterMadeofElectromagnetic(3+0)DSolitons? -- 4.2.InsertingtheQuantumCalculationofEnergiesintotheClassicalTheory -- 5.Conclusion -- References.
505 8 _aChapter3APOSSIBLESCENARIOFORVOLUMETRICDISPLAYTHROUGHNANOPARTICLESUSPENSIONS -- Abstract -- References -- Chapter4STATISTICALPROPERTIESOFNONLINEARPHASENOISE -- Abstract -- 1.Introduction -- 2.JointStatisticsofNonlinearPhaseNoiseandElectricField -- 2.1.NormalizationofNonlinearPhaseNoise -- 2.2.SeriesExpansion -- 2.3.JointCharacteristicFunction -- 3.TheProbabilityDensityFunctionofNonlinearPhaseNoise -- 4.SomeJointCharacteristicFunctions -- 4.1.JointCharacteristicFunctionofNonlinearPhaseNoiseandReceivedIntensity -- 4.2.JointCharacteristicFunctionofNonlinearPhaseNoiseandPhaseofAmplifierNoise -- 5.ErrorProbabilityofDPSKSignal -- 5.1.PhaseDistribution -- 5.2.ErrorProbability -- 5.3.ApproximationofIndependence -- 5.4.NumericalResults -- 6.CompensationofNonlinearPhaseNoise -- 6.1.LinearCompensation -- 6.2.NonlinearCompensation -- 6.3.ComparisonofLinearandNonlinearCompensators -- 7.Conclusion -- References -- Chapter 5TRANSMITTED INTENSITY DISTURBANCEFOR AIR-SPACED GLAN-TYPE POLARIZING PRISMS -- Abstract -- 1. Introduction -- 2. Experimental Results -- 3. Theoretical Analysis and Numerical Results -- 4. Thermal Effects -- 5. Conclusions -- References -- Chapter6GAIN,DISPERSIONANDCAUSALITYINQUASI-PHASE-MATCHEDOPTICALPARAMETRICAMPLIFICATION -- Abstract -- 1.Introduction -- 2.ParametricAmplificationinQPMNonlinear˜(2)Crystal:TheModel -- 3.SpectralGainCurveandGroupDelayAnalysis:CausalityandtheKramers-Kr¨onigRelation -- 3.1.Coupled-ModeEquationsandComplexSpectralGainofaParametricAmplifier -- 3.2.CausalityandKramers-Kr¨onigRelationfortheComplexSpectralGainCurve -- 3.3.SynthesisofaTargetSpectralGainCurve -- 4.Group-VelocityControlofPulsePropagationinQPM˜(2)GratingStructures -- 4.1.ComplexGroupDelay -- 4.2.SuperluminalandNegativeGroupVelocities -- 5.ConclusionsandDiscussion -- A.DerivationofEnvelopeEquations -- References.
505 8 _aChapter7PHYSICALORIGINOFNONLINEARPHENOMENAINOPTICS -- Abstract -- 1.Introduction -- 2.InfraredLaserMultiplePhotonExcitationofPolyatomicMolecules -- 3.NonlinearOpticalEffects -- 4.Conclusion -- References -- Chapter8ANALYSISOFGEOMETRICVARIATIONSANDPERTURBATIONSINHIGHINDEX-CONTRASTWAVEGUIDES,COUPLEDMODEANDPERTURBATIONTHEORIESINVARIATIONMATCHEDCURVILINEARCOORDINATES -- Abstract -- 1.Introduction -- 2.TypesofGeometricalVariationsofFiberProfiles -- 3.CoupledModeTheoryforMaxwell'sEquations -- 4.CurvilinearCoordinateSystems -- 5.Maxwell'sEquationsinCurvilinearCoordinates -- 6.CoupledModeTheoryforMaxwell'sEquationsinCurvilin-earCoordinates -- 6.1.ExpansionBasis -- 6.2.CoupledModeTheory -- 7.StudyofConvergenceoftheCoupledModeTheoryforNon-uniformWaveguides -- 8.StudyofConvergenceofthePerturbationExpansionsandaCoupledModeTheoryforUniformWaveguides -- 9.PMDofHollowCoreOmnidirectionalBandgapFiber -- 10.Conclusion -- Acknowledgements -- References -- Chapter 9LASER PROCESSING OF METALS USINGFEMTOSECOND AND NANOSECONDEXCIMER LASER IRRADIATION -- Abstract -- I. Introduction -- II. Experimental Methods -- A. Laser Systems and Characterization -- B. Electrochemical Analysis -- C. Film Preparation for Laser Removal -- III. Thermal Dynamic Analysis -- A. Fundamentals of Laser-Matter Interaction -- B. Ultrafast Processes Measurement -- IV. Results and Discussion -- A. Experimental Investigation of Laser-Matter Interaction -- B. Surface Structure Evolution as a Function of Laser Fluence -- (1) Surface structuring with a 10-pulse irradiation -- (2) Surface structuring with a 200-pulse irradiation -- (3) Surface structuring with a ns-pulse irradiation -- C. Electrochemical Analysis -- (1). Surface structuring and compositioning -- (2). Corrosion resistance characteristics of laser-irradiated surfaces.
505 8 _a(3). Corrosion resistance properties as a function of number of laser pulses -- (4). Corrosion resistance properties as a function of laser fluence -- D. Laser Removal of Coatings -- 5. Discussion -- A. Nanosecond Pulse Laser Treatment -- B. Femtosecond Pulse Laser Treatment -- C. Considerations under a Repetitive fs-pulse Irradiation at a HigherFluence -- V. Summary -- Acknowledgments -- References -- INDEX.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aLasers--Research.
_923144
655 4 _aElectronic books.
_923145
700 1 _aArkin, William T.
_923143
776 0 8 _iPrint version:
_aArkin, William T.
_tAdvances in Laser and Optics Research. Volume 3
_dHauppauge : Nova Science Publishers, Incorporated,c2010
_z9781590338551
797 2 _aProQuest (Firm)
830 0 _aAdvances in Laser and Optics Research
_923146
856 4 0 _uhttps://ebookcentral.proquest.com/lib/thebc/detail.action?docID=3017677
_zClick to View
887 _aEBK
942 _cEBK
999 _c69241
_d69241