Modeling Atmospheric and Oceanic Flows : Insights from Laboratory Experiments and Numerical Simulations.

By: von Larcher, ThomasContributor(s): Williams, Paul DSeries: Geophysical Monograph SerPublisher: Washington : American Geophysical Union, 2014Copyright date: ©2014Edition: 1st edDescription: 1 online resource (386 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9781118855904Subject(s): Atmospheric physics.;OceanographyGenre/Form: Electronic books. Additional physical formats: Print version:: Modeling Atmospheric and Oceanic Flows : Insights from Laboratory Experiments and Numerical SimulationsDDC classification: 551.5 LOC classification: QC861.3 -- .M634 2015ebOnline resources: Click to View
Contents:
Intro -- Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgments -- Introduction: Simulations of Natural Flows in the Laboratory and on a Computer -- References -- Section I Baroclinic-Driven Flows -- Chapter 1 General Circulation of Planetary Atmospheres: Insights from Rotating Annulus and Related Experiments -- 1.1. Laboratory Experiments as "Models" of Physical Systems -- 1.2. Rotating, Stratified Experiments and Global Circulation of Atmospheres and Oceans -- 1.3. Flow Regimes and Transitions -- 1.4. Heat Transport and Role of Baroclinic Waves -- 1.5. Discussion -- References -- Chapter 2 Primary Flow Transitions in the Baroclinic Annulus: Prandtl Number Effects -- 2.1. Introduction -- 2.2. Model -- 2.3. Transition Curve -- 2.4. Nonlinear Analysis -- 2.5. Conclusion and Future Work -- References -- Chapter 3 Amplitude Vacillation in Baroclinic Flows -- 3.1. Phenomenology of Amplitude Vacillation -- 3.2. Mechanics of Amplitude Vacillation -- 3.3. Modelling Approaches -- 3.4. Wave Interactions -- 3.5. Prandtl Number Effects -- 3.6. Other Forms of Vacillation -- 3.7. Amplitude Vacillation as Step Toward Chaos and Turbulence -- 3.8. Conclusion -- Appendix A: Morals Code Setup -- Appendix B: Low-Order Model of Boundary Layer Feedback -- References -- Section II Balanced and Unbalanced Flows -- Chapter 4 Rotation Effects on Wall-Bounded Flows: Some Laboratory Experiments -- 4.1. Introduction -- 4.2. Flow Parameters and Features of Some Rotating Flows -- 4.3. Laboratory Facilities -- 4.4. Some Intriguing Results in Rotating Flows -- 4.5. Conclusions -- References -- Chapter 5 Altimetry in a GFD Laboratory and Flows on the Polar β-Plane -- 5.1. Introduction -- 5.2. Polar β-Plane -- 5.3. Altimetric Imaging Velocimetry.
5.4. Inertial and Planetary/Topographic Waves -- 5.5. Observations -- 5.6. Summary -- References -- Chapter 6 Instabilities of Shallow-Water Flows with Vertical Shear in the Rotating Annulus -- 6.1. Introduction -- 6.2. Stability of Fronts Under Rigid Lid -- 6.3. Stability of Outcropping Buoyancy-Driven Boundary Currents -- 6.4. Impact of Bathymetry on Instabilities -- 6.5. Summary and Discussion -- References -- Chapter 7 Laboratory Experiments on Flows Over Bottom Topography -- 7.1. Introduction -- 7.2. Theory and Experimental Background -- 7.3. Large-Scale Experiments O(10 M) -- 7.4. Medium-Scale Experiments O(1 M) -- 7.5. Small-Scale Experiments O(0.1 M) -- 7.6. Concluding Remarks -- References -- Chapter 8 Direct Numerical Simulations of Laboratory-Scale Stratified Turbulence -- 8.1. Introduction -- 8.2. Background -- 8.3. Direct Numerical Simulation -- 8.4. Discussion and Conclusions -- References -- Section III Atmospheric Flows -- Chapter 9 Numerical Simulation (DNS, LES) of Geophysical Laboratory Experiments: Quasi-Biennial Oscillation (QBO) Analogue and Simulations Toward Madden-Julian Oscillation (MJO) Analogue -- 9.1. Introduction -- 9.2. Quasi-Biennial Oscillation -- 9.3. Madden-Julian Oscillation -- 9.4. Discussion -- References -- Chapter 10 Internal Waves in Laboratory Experiments -- 10.1. Introduction -- 10.2. Qualitative Use of Synthetic Schlieren -- 10.3. Spanwise-Uniform Disturbances -- 10.4. Non-Spanwise-Uniform Disturbances -- 10.5. Other Advances -- 10.6. Discussion and Conclusions -- References -- Chapter 11 Frontal Instabilities at Density-Shear Interfaces in Rotating Two-Layer Stratified Fluids -- 11.1. Introduction -- 11.2. Equations and Scales for Laboratory Experiments -- 11.3. Flow Evolution of Observed Instabilities -- 11.4. Conclusions and Discussion -- References -- Section IV Oceanic Flows.
Chapter 12 Large-Amplitude Coastal Shelf Waves -- 12.1. Shelf Waves and Coastal Currents in the Laboratory -- 12.2. Experiments with Large-Amplitude Shelf Waves -- 12.3. Quasi-Geostrophic Model Equations -- 12.4. Nonlinear Shelf Wave Theory -- 12.5. Numerical Solution of Inviscid Quasi-Geostrophic Equations -- 12.6. Shelf Wave Breaking -- 12.7. Summary and Discussion -- References -- Chapter 13 Laboratory Experiments With Abrupt Thermohaline Transitions and Oscillations -- 13.1. Introduction -- 13.2. Four Laboratory Experiments Showing Abrupt Thermohaline Transitions -- 13.3. Oscillations -- 13.4. Summary and Discussion -- References -- Chapter 14 Oceanic Island Wake Flows in the Laboratory -- 14.1. Introduction -- 14.2. Dimensional Analysis and Dynamical Parameters -- 14.3. Idealized Laboratory Setups for Oceanic Island Configuration -- 14.4. Mesoscale Vortex Wake -- 14.5. Submesoscale Vortex Wake -- 14.6. Cyclone-Anticyclone Asymmetry -- 14.7. From Idealized Laboratory Flows to Complex Oceanic Wake -- References -- Section V: Advances in Methodology -- Chapter 15 Lagrangian Methods in Experimental Fluid Mechanics -- 15.1. Introduction -- 15.2. Optical Techniques -- 15.3. Acoustic Techniques -- 15.4. Instrumented Particles -- 15.5. Conclusions and Discussion -- References -- Chapter 16 A High-Resolution Method for Direct Numerical Simulation of Instabilities and Transitions in a Baroclinic Cavity -- 16.1. Introduction -- 16.2. Numerical Model -- 16.3. Results -- 16.4. Conclusions -- References -- Chapter 17 Orthogonal Decomposition Methods to Analyze PIV, LDV, and Thermography Data of Thermally Driven Rotating Annulus Laboratory Experiments -- 17.1. Introduction -- 17.2. Experimental Setup, Parameters, and Flow Regimes -- 17.3. Results -- 17.4. Conclusion -- References -- Index -- End User License Agreement.
Summary: Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations provides a broad overview of recent progress in using laboratory experiments and numerical simulations to model atmospheric and oceanic fluid motions. This volume not only surveys novel research topics in laboratory experimentation, but also highlights recent developments in the corresponding computational simulations. As computing power grows exponentially and better numerical codes are developed, the interplay between numerical simulations and laboratory experiments is gaining paramount importance within the scientific community. The lessons learnt from the laboratory-model comparisons in this volume will act as a source of inspiration for the next generation of experiments and simulations. Volume highlights include: Topics pertaining to atmospheric science, climate physics, physical oceanography, marine geology and geophysics Overview of the most advanced experimental and computational research in geophysics Recent developments in numerical simulations of atmospheric and oceanic fluid motion Unique comparative analysis of the experimental and numerical approaches to modeling fluid flow Modeling Atmospheric and Oceanic Flows will be a valuable resource for graduate students, researchers, and professionals in the fields of geophysics, atmospheric sciences, oceanography, climate science, hydrology, and experimental geosciences..
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan
Available EBKAF00099256
Ebrary Ebrary Algeria
Available
Ebrary Ebrary Cyprus
Available
Ebrary Ebrary Egypt
Available
Ebrary Ebrary Libya
Available
Ebrary Ebrary Morocco
Available
Ebrary Ebrary Nepal
Available EBKNP00099256
Ebrary Ebrary Sudan

Access a wide range of magazines and books using Pressreader and Ebook central.

Enjoy your reading, British Council Sudan.

Available
Ebrary Ebrary Tunisia
Available
Total holds: 0

Intro -- Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgments -- Introduction: Simulations of Natural Flows in the Laboratory and on a Computer -- References -- Section I Baroclinic-Driven Flows -- Chapter 1 General Circulation of Planetary Atmospheres: Insights from Rotating Annulus and Related Experiments -- 1.1. Laboratory Experiments as "Models" of Physical Systems -- 1.2. Rotating, Stratified Experiments and Global Circulation of Atmospheres and Oceans -- 1.3. Flow Regimes and Transitions -- 1.4. Heat Transport and Role of Baroclinic Waves -- 1.5. Discussion -- References -- Chapter 2 Primary Flow Transitions in the Baroclinic Annulus: Prandtl Number Effects -- 2.1. Introduction -- 2.2. Model -- 2.3. Transition Curve -- 2.4. Nonlinear Analysis -- 2.5. Conclusion and Future Work -- References -- Chapter 3 Amplitude Vacillation in Baroclinic Flows -- 3.1. Phenomenology of Amplitude Vacillation -- 3.2. Mechanics of Amplitude Vacillation -- 3.3. Modelling Approaches -- 3.4. Wave Interactions -- 3.5. Prandtl Number Effects -- 3.6. Other Forms of Vacillation -- 3.7. Amplitude Vacillation as Step Toward Chaos and Turbulence -- 3.8. Conclusion -- Appendix A: Morals Code Setup -- Appendix B: Low-Order Model of Boundary Layer Feedback -- References -- Section II Balanced and Unbalanced Flows -- Chapter 4 Rotation Effects on Wall-Bounded Flows: Some Laboratory Experiments -- 4.1. Introduction -- 4.2. Flow Parameters and Features of Some Rotating Flows -- 4.3. Laboratory Facilities -- 4.4. Some Intriguing Results in Rotating Flows -- 4.5. Conclusions -- References -- Chapter 5 Altimetry in a GFD Laboratory and Flows on the Polar β-Plane -- 5.1. Introduction -- 5.2. Polar β-Plane -- 5.3. Altimetric Imaging Velocimetry.

5.4. Inertial and Planetary/Topographic Waves -- 5.5. Observations -- 5.6. Summary -- References -- Chapter 6 Instabilities of Shallow-Water Flows with Vertical Shear in the Rotating Annulus -- 6.1. Introduction -- 6.2. Stability of Fronts Under Rigid Lid -- 6.3. Stability of Outcropping Buoyancy-Driven Boundary Currents -- 6.4. Impact of Bathymetry on Instabilities -- 6.5. Summary and Discussion -- References -- Chapter 7 Laboratory Experiments on Flows Over Bottom Topography -- 7.1. Introduction -- 7.2. Theory and Experimental Background -- 7.3. Large-Scale Experiments O(10 M) -- 7.4. Medium-Scale Experiments O(1 M) -- 7.5. Small-Scale Experiments O(0.1 M) -- 7.6. Concluding Remarks -- References -- Chapter 8 Direct Numerical Simulations of Laboratory-Scale Stratified Turbulence -- 8.1. Introduction -- 8.2. Background -- 8.3. Direct Numerical Simulation -- 8.4. Discussion and Conclusions -- References -- Section III Atmospheric Flows -- Chapter 9 Numerical Simulation (DNS, LES) of Geophysical Laboratory Experiments: Quasi-Biennial Oscillation (QBO) Analogue and Simulations Toward Madden-Julian Oscillation (MJO) Analogue -- 9.1. Introduction -- 9.2. Quasi-Biennial Oscillation -- 9.3. Madden-Julian Oscillation -- 9.4. Discussion -- References -- Chapter 10 Internal Waves in Laboratory Experiments -- 10.1. Introduction -- 10.2. Qualitative Use of Synthetic Schlieren -- 10.3. Spanwise-Uniform Disturbances -- 10.4. Non-Spanwise-Uniform Disturbances -- 10.5. Other Advances -- 10.6. Discussion and Conclusions -- References -- Chapter 11 Frontal Instabilities at Density-Shear Interfaces in Rotating Two-Layer Stratified Fluids -- 11.1. Introduction -- 11.2. Equations and Scales for Laboratory Experiments -- 11.3. Flow Evolution of Observed Instabilities -- 11.4. Conclusions and Discussion -- References -- Section IV Oceanic Flows.

Chapter 12 Large-Amplitude Coastal Shelf Waves -- 12.1. Shelf Waves and Coastal Currents in the Laboratory -- 12.2. Experiments with Large-Amplitude Shelf Waves -- 12.3. Quasi-Geostrophic Model Equations -- 12.4. Nonlinear Shelf Wave Theory -- 12.5. Numerical Solution of Inviscid Quasi-Geostrophic Equations -- 12.6. Shelf Wave Breaking -- 12.7. Summary and Discussion -- References -- Chapter 13 Laboratory Experiments With Abrupt Thermohaline Transitions and Oscillations -- 13.1. Introduction -- 13.2. Four Laboratory Experiments Showing Abrupt Thermohaline Transitions -- 13.3. Oscillations -- 13.4. Summary and Discussion -- References -- Chapter 14 Oceanic Island Wake Flows in the Laboratory -- 14.1. Introduction -- 14.2. Dimensional Analysis and Dynamical Parameters -- 14.3. Idealized Laboratory Setups for Oceanic Island Configuration -- 14.4. Mesoscale Vortex Wake -- 14.5. Submesoscale Vortex Wake -- 14.6. Cyclone-Anticyclone Asymmetry -- 14.7. From Idealized Laboratory Flows to Complex Oceanic Wake -- References -- Section V: Advances in Methodology -- Chapter 15 Lagrangian Methods in Experimental Fluid Mechanics -- 15.1. Introduction -- 15.2. Optical Techniques -- 15.3. Acoustic Techniques -- 15.4. Instrumented Particles -- 15.5. Conclusions and Discussion -- References -- Chapter 16 A High-Resolution Method for Direct Numerical Simulation of Instabilities and Transitions in a Baroclinic Cavity -- 16.1. Introduction -- 16.2. Numerical Model -- 16.3. Results -- 16.4. Conclusions -- References -- Chapter 17 Orthogonal Decomposition Methods to Analyze PIV, LDV, and Thermography Data of Thermally Driven Rotating Annulus Laboratory Experiments -- 17.1. Introduction -- 17.2. Experimental Setup, Parameters, and Flow Regimes -- 17.3. Results -- 17.4. Conclusion -- References -- Index -- End User License Agreement.

Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations provides a broad overview of recent progress in using laboratory experiments and numerical simulations to model atmospheric and oceanic fluid motions. This volume not only surveys novel research topics in laboratory experimentation, but also highlights recent developments in the corresponding computational simulations. As computing power grows exponentially and better numerical codes are developed, the interplay between numerical simulations and laboratory experiments is gaining paramount importance within the scientific community. The lessons learnt from the laboratory-model comparisons in this volume will act as a source of inspiration for the next generation of experiments and simulations. Volume highlights include: Topics pertaining to atmospheric science, climate physics, physical oceanography, marine geology and geophysics Overview of the most advanced experimental and computational research in geophysics Recent developments in numerical simulations of atmospheric and oceanic fluid motion Unique comparative analysis of the experimental and numerical approaches to modeling fluid flow Modeling Atmospheric and Oceanic Flows will be a valuable resource for graduate students, researchers, and professionals in the fields of geophysics, atmospheric sciences, oceanography, climate science, hydrology, and experimental geosciences..

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.