Waves and Wave Forces on Coastal and Ocean Structures.

By: Hudspeth, Robert TSeries: Advanced Series on Ocean Engineering SerPublisher: Singapore : World Scientific Publishing Co Pte Ltd, 2006Copyright date: ©2006Description: 1 online resource (954 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9789812774828Subject(s): Fluid dynamics -- Mathematical models.;Ocean waves -- Mathematical models.;Water waves -- Mathematical modelsGenre/Form: Electronic books. Additional physical formats: Print version:: Waves and Wave Forces on Coastal and Ocean StructuresDDC classification: 624.1 LOC classification: QA927.H835 2006Online resources: Click to View
Contents:
Intro -- Contents -- Preface -- 1 Introduction -- 2 Mathematical Preliminaries -- 2.1 Introduction -- 2.2 Symbols Functions and Linear Operators -- 2.2.1 Landau Order Symbols 0(E) and o(E) (Nayfeh 1973 Chapter 1.3 and Olver 1990 Chapter 12.1.1) -- 2.2.2 Heaviside Step Function U(x-E) -- 2.2.3 Kronecker Delta 8mn Function and Dirac Delta 8(x-E) Distribution -- 2.2.4 Levi-Civita Symbol Eijk(Arfken 1985) -- 2.2.5 Gamma Functions T(o) (Andrews 1985) -- 2.2.6 Error Functions Erf(o) and Erfc(o) (Barcilon 1990 p. 351) -- 2.2.7 Gradient Vector Operator V(o) -- 2.2.8 Curl Vector Operator w = V x (o) -- 2.2.9 Laplacian Operator V2(o) = A(o) -- 2.2.10 Stokes Material Derivative Operator D(o)/Dt -- 2.2.11 Leibnitz's Rule for Differentiation of Integrals with Parameters (Hildebrand 1976 Chapter 7.9) -- 2.2.12 Signum (sign + ) Function -- 2.3 Properties of Series -- 2.3.1 Power Series (Hildebrand 1976 Chapter 4.1) -- 2.3.2 Function Series -- 2.3.3 Maclauren and Taylor Series (Hildebrand 1976 Chapters 4.1 and 7.5) -- 2.3.4 Binomial Expansion (Wylie and Barrett 1982 p.938) -- 2.4 Elementary and Special Functions (Hildebrand 1976 Chapter 10.2) -- 2.4.1 Trigonometric and Hyperbolic Identities -- 2.4.2 Euler's Constant yE (Barcilon 1990 p. 346) -- 2.4.3 Bessel Functions (Hildebrand 1976 Chapters 4.8 to 4.10) -- 2.4.4 Orthogonal Polynomials -- 2.5 Linear Ordinary Differential Equations (Hildebrand 1976 Chapters 1.1 to 1.11) and Operational Calculus (Friedman 1956) -- 2.5.1 Initial and Boundary Data (Stakgold 1979) -- 2.5.2 First Order Linear Ordinary Differential Equations (Hildebrand 1976 Chapter 1.4) -- 2.5.3 Variation of Parameters and the Duhamel Convolution Integral (Hildebrand 1976 Chapter 1.9) -- 2.5.4 Properties of Linear Differential Operators L(o) (Hildebrand 1976 Chapter 1.7) -- 2.5.5 Method of Frobenius (Hildebrand 1976 Chapter 4.4).
2.5.6 Method of Undetermined Coefficients (Hildebrand 1976 Chapter 1.5) -- 2.6 Sturm-Liouville Systems (Morse and Feshbach 1953 Chapter 6.3 -- Hildebrand 1976 Chapter 5.6 -- Oates 1990 Chapter 3.6.5 and Benton 1990 Chapter 6.6) -- 3 Fundamentals of Fluid Mechanics -- 3.1 Introduction -- 3.2 Conservation of Mass (Continuity Field Equation) -- 3.3 Momentum Principle -- 3.3.1 Inertial Forces -- 3.3.2 Surface Stresses -- 3.3.3 Body Forces -- 3.3.4 Navier-Stokes Equations (Lamb 1932) -- 3.3.5 Euler's Equations (Lamb 1932) -- 3.4 Mechanical Energy Principle -- 3.5 Scaling of Equations -- 3.6 Dimensional Analyses -- 3.7 Problems -- 4 Long-Crested Linear Wave Theory (LWT) -- 4.1 Introduction -- 4.2 Dimensional Boundary Value Problem (BVP) for LWT -- 4.3 Solutions to Dimensional Boundary Value Problem (BVP) for Long-Crested Linear Wave Theory (LWT) -- 4.3.1 Wave Celerity C and Computing the Eigenvalue k from the Frequency Dispersion Equation -- 4.4 Eulerian Kinematic Fields and Lagrangian Particle Displacements -- 4.5 Eulerian Dynamic Fields Energy and Energy Flux Conservation Principles for Long-Crested Linear Waves -- 4.6 Wave Transformations for Long-Crested Progressive Linear Waves: Shoaling and Refraction -- 4.7 Problems -- 5 Wavemaker Theories -- 5.1 Introduction -- 5.2 Planar Wavemakers in a 2D Channel -- 5.2.1 Computation of the Eigenvalues Kn by the Newton-Raphson Method -- 5.2.2 Rate of Decay of Evanescent Eigenmodes: n > 2 -- 5.2.3 Orthogonality of Orthonormal Eigenfunctions Wn(Kn z/h) -- 5.2.4 Evaluation of Coefficients Cn by Wavemaker Vertical Displacement X(z/h) -- 5.2.5 Determination of Wave Amplitude from Wavemaker Motion -- 5.2.6 Hydrodynamic Pressure Force and Moment (Added Mass and Radiation Damping) -- 5.3 Circular Wavemakers -- 5.3.1 Determination of Wave Amplitude from Wavemaker Motion.
5.3.2 Hydrodynamic Pressure Force and Moment (Added Mass and Radiation Damping) -- 5.4 Double-Actuated Wavemaker -- 5.5 Directional Wavemaker -- 5.6 Sloshing Waves in a 2D Wave Channel -- 5.7 Conformal and Domain Mapping of WMBVP -- 5.7.1 Conformal Mapping -- 5.7.2 Domain Mapping -- 5.8 Problems -- 6 Nonlinear Wave Theories -- 6.1 Introduction -- 6.2 Classical Stokes: The Method of Successive Approximations -- 6.3 Traditional Stokes: Lindstedt-Poincare 4th Order Perturbation Solution -- 6.3.1 Traditional Stokes: Stokes Drift -- 6.4 Method of Multiple Scales (MMS)2 -- 6.5 Stream Function Solutions -- 6.6 Breaking Progressive Waves -- 6.7 Second-Order Nonlinear Planar Wavemaker Theory -- 6.8 Chaotic Cross Waves: Generalized Melnikov Method (GMM) and Liapunov Exponents -- 6.9 Problems -- 7 Deterministic Dynamics of Small Solid Bodies -- 7.1 Introduction -- 7.2 Small Body Hypothesis (Morison Equation) -- 7.3 Drag dFd and Inertia dFm Forces -- 7.3.1 Inertia Forces -- 7.4 Comparison Between a Fixed Cylinder in Accelerating Flow and an Accelerating Cylinder in Still Fluid -- 7.4.1 Accelerating Cylinder in Still Fluid -- 7.4.2 Fixed Cylinder in an Accelerating Flow -- 7.5 Maximum Static-Equivalent Force/Moment (Fixed-Free Beam) -- 7.6 Parametric Dependency of Force Coefficients Cm and Cd -- 7.6.1 Relative Importance of dFm(zi t) and dFd(zi t) -- 7.6.2 Computing the Force Coefficients Cm and Cd -- 7.6.3 Methods of Analyses -- 7.6.4 Linearized Drag Force -- 7.6.5 Laboratory U-Tube Data -- 7.6.6 Ocean Wave Data -- 7.7 The Dean Eccentricity Parameter and Data Condition -- 7.7.1 Dean Error Ellipse and Eccentricity Parameter E (Geometric) -- 7.7.2 Amplitude/Phase Method (Geometric) -- 7.7.3 Matrix Condition Numbers (Numerical) -- 7.8 Modified Wave Force Equation (WFE Relative Motion Morison Equation) -- 7.8.1 Articulated Circular Cylindrical Tower: SDOF System.
7.8.2 Two Semi-Immersed Horizontal Circular Cylinders: MDOF System -- 7.9 Transverse Forces on Bluff Solid Bodies -- 7.10 Stability of Marine Pipelines -- 7.11 Problems -- 8 Deterministic Dynamics of Large Solid Bodies -- 8.1 Dynamic Response of Large Bodies: An Overview -- 8.2 Linearized MDOF Large Solid Body Dynamics -- 8.2.1 Kinematic Body Boundary Conditions (KBBC) -- 8.2.2 Dynamic Body Boundary Condition (DBBC) -- 8.3 Froude-Kriloff Approximations for Potential Theory -- 8.3.1 Froude-Kriloff Load in 2-D Cartesian Coordinates -- 8.3.2 Froude-Kriloff Load in Circular Cylindrical Coordinates -- 8.4 Diffraction by a Full-Draft Vertical Circular Cylinder -- 8.5 Reciprocity Relationships -- 8.6 Green's Functions and Fredholm Integral Equations -- 8.6.1 Orthonormal Eigenfunction Expansion of Green's Function for 2D Wavemaker -- 8.7 Wave Loads Computed by the FEM -- 8.8 Problems -- 9 Real Ocean Waves -- 9.1 Introduction -- 9.2 Fourier Analyses -- 9.3 Ocean Wave Spectra -- 9.3.1 Generic Four-Parameter Wave Density Spectrum -- 9.3.2 Wave and Spectral Parameters Computed from Spectral Moments mn -- 9.3.3 Multi-Parameter Theoretical Spectra -- 9.3.4 Spectral Directional Spreading Functions -- 9.3.5 Confidence Intervals for FFT Estimates -- 9.4 Probability Functions for Random Waves -- 9.4.1 Gaussian (Normal) Probability Distribution -- 9.4.2 Rayleigh Probability Distribution -- 9.4.3 Distribution of the Maxima -- 9.5 Wave Groups -- 9.5.1 Resolving Incident and Reflected Random Wave Time Series -- 9.6 Random Wave Simulations -- 9.6.1 Conditional Wave Simulations -- 9.7 Data Analyses: An Example from Hurricane CARLA -- 9.8 Random Wave Forces on Small Circular Members -- 9.8.1 Probability Density Function p(Y) (pdf) and Covariance Function CFTFT(T) for Nondeterministic Wave Force per Unit Length for a Small Vertical Circular Pile.
9.8.2 Stochastic Response of Space-Frame Offshore Structure -- 9.9 Frequency Domain Input-Output Transfer Functions -- 9.10 Problems -- Bibliography -- Author Index -- Subject Index.
Summary: This book focuses on: (1) the physics of the fundamental dynamics of fluids and of semi-immersed Lagrangian solid bodies that are responding to wave-induced loads; (2) the scaling of dimensional equations and boundary value problems in order to determine a small dimensionless parameter ε that may be applied to linearize the equations and the boundary value problems so as to obtain a linear system; (3) the replacement of differential and integral calculus with algebraic equations that require only algebraic substitutions instead of differentiations and integrations; and (4) the importance of comparing numerical and analytical computations with data from laboratories and/or nature. Sample Chapter(s). Chapter 1: Introduction (135 KB). Contents: Mathematical Preliminaries; Fundamentals of Fluid Mechanics; Long-Crested, Linear Wave Theory (LWT); Wavemaker Theories; Nonlinear Wave Theories; Deterministic Dynamics of Small Solid Bodies; Deterministic Dynamics of Large Solid Bodies; Real Ocean Waves. Readership: Graduate students and practitioners in ocean and coastal engineering.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan
Available EBKAF00093198
Ebrary Ebrary Algeria
Available
Ebrary Ebrary Cyprus
Available
Ebrary Ebrary Egypt
Available
Ebrary Ebrary Libya
Available
Ebrary Ebrary Morocco
Available
Ebrary Ebrary Nepal
Available EBKNP00093198
Ebrary Ebrary Sudan

Access a wide range of magazines and books using Pressreader and Ebook central.

Enjoy your reading, British Council Sudan.

Available
Ebrary Ebrary Tunisia
Available
Total holds: 0

Intro -- Contents -- Preface -- 1 Introduction -- 2 Mathematical Preliminaries -- 2.1 Introduction -- 2.2 Symbols Functions and Linear Operators -- 2.2.1 Landau Order Symbols 0(E) and o(E) (Nayfeh 1973 Chapter 1.3 and Olver 1990 Chapter 12.1.1) -- 2.2.2 Heaviside Step Function U(x-E) -- 2.2.3 Kronecker Delta 8mn Function and Dirac Delta 8(x-E) Distribution -- 2.2.4 Levi-Civita Symbol Eijk(Arfken 1985) -- 2.2.5 Gamma Functions T(o) (Andrews 1985) -- 2.2.6 Error Functions Erf(o) and Erfc(o) (Barcilon 1990 p. 351) -- 2.2.7 Gradient Vector Operator V(o) -- 2.2.8 Curl Vector Operator w = V x (o) -- 2.2.9 Laplacian Operator V2(o) = A(o) -- 2.2.10 Stokes Material Derivative Operator D(o)/Dt -- 2.2.11 Leibnitz's Rule for Differentiation of Integrals with Parameters (Hildebrand 1976 Chapter 7.9) -- 2.2.12 Signum (sign + ) Function -- 2.3 Properties of Series -- 2.3.1 Power Series (Hildebrand 1976 Chapter 4.1) -- 2.3.2 Function Series -- 2.3.3 Maclauren and Taylor Series (Hildebrand 1976 Chapters 4.1 and 7.5) -- 2.3.4 Binomial Expansion (Wylie and Barrett 1982 p.938) -- 2.4 Elementary and Special Functions (Hildebrand 1976 Chapter 10.2) -- 2.4.1 Trigonometric and Hyperbolic Identities -- 2.4.2 Euler's Constant yE (Barcilon 1990 p. 346) -- 2.4.3 Bessel Functions (Hildebrand 1976 Chapters 4.8 to 4.10) -- 2.4.4 Orthogonal Polynomials -- 2.5 Linear Ordinary Differential Equations (Hildebrand 1976 Chapters 1.1 to 1.11) and Operational Calculus (Friedman 1956) -- 2.5.1 Initial and Boundary Data (Stakgold 1979) -- 2.5.2 First Order Linear Ordinary Differential Equations (Hildebrand 1976 Chapter 1.4) -- 2.5.3 Variation of Parameters and the Duhamel Convolution Integral (Hildebrand 1976 Chapter 1.9) -- 2.5.4 Properties of Linear Differential Operators L(o) (Hildebrand 1976 Chapter 1.7) -- 2.5.5 Method of Frobenius (Hildebrand 1976 Chapter 4.4).

2.5.6 Method of Undetermined Coefficients (Hildebrand 1976 Chapter 1.5) -- 2.6 Sturm-Liouville Systems (Morse and Feshbach 1953 Chapter 6.3 -- Hildebrand 1976 Chapter 5.6 -- Oates 1990 Chapter 3.6.5 and Benton 1990 Chapter 6.6) -- 3 Fundamentals of Fluid Mechanics -- 3.1 Introduction -- 3.2 Conservation of Mass (Continuity Field Equation) -- 3.3 Momentum Principle -- 3.3.1 Inertial Forces -- 3.3.2 Surface Stresses -- 3.3.3 Body Forces -- 3.3.4 Navier-Stokes Equations (Lamb 1932) -- 3.3.5 Euler's Equations (Lamb 1932) -- 3.4 Mechanical Energy Principle -- 3.5 Scaling of Equations -- 3.6 Dimensional Analyses -- 3.7 Problems -- 4 Long-Crested Linear Wave Theory (LWT) -- 4.1 Introduction -- 4.2 Dimensional Boundary Value Problem (BVP) for LWT -- 4.3 Solutions to Dimensional Boundary Value Problem (BVP) for Long-Crested Linear Wave Theory (LWT) -- 4.3.1 Wave Celerity C and Computing the Eigenvalue k from the Frequency Dispersion Equation -- 4.4 Eulerian Kinematic Fields and Lagrangian Particle Displacements -- 4.5 Eulerian Dynamic Fields Energy and Energy Flux Conservation Principles for Long-Crested Linear Waves -- 4.6 Wave Transformations for Long-Crested Progressive Linear Waves: Shoaling and Refraction -- 4.7 Problems -- 5 Wavemaker Theories -- 5.1 Introduction -- 5.2 Planar Wavemakers in a 2D Channel -- 5.2.1 Computation of the Eigenvalues Kn by the Newton-Raphson Method -- 5.2.2 Rate of Decay of Evanescent Eigenmodes: n > 2 -- 5.2.3 Orthogonality of Orthonormal Eigenfunctions Wn(Kn z/h) -- 5.2.4 Evaluation of Coefficients Cn by Wavemaker Vertical Displacement X(z/h) -- 5.2.5 Determination of Wave Amplitude from Wavemaker Motion -- 5.2.6 Hydrodynamic Pressure Force and Moment (Added Mass and Radiation Damping) -- 5.3 Circular Wavemakers -- 5.3.1 Determination of Wave Amplitude from Wavemaker Motion.

5.3.2 Hydrodynamic Pressure Force and Moment (Added Mass and Radiation Damping) -- 5.4 Double-Actuated Wavemaker -- 5.5 Directional Wavemaker -- 5.6 Sloshing Waves in a 2D Wave Channel -- 5.7 Conformal and Domain Mapping of WMBVP -- 5.7.1 Conformal Mapping -- 5.7.2 Domain Mapping -- 5.8 Problems -- 6 Nonlinear Wave Theories -- 6.1 Introduction -- 6.2 Classical Stokes: The Method of Successive Approximations -- 6.3 Traditional Stokes: Lindstedt-Poincare 4th Order Perturbation Solution -- 6.3.1 Traditional Stokes: Stokes Drift -- 6.4 Method of Multiple Scales (MMS)2 -- 6.5 Stream Function Solutions -- 6.6 Breaking Progressive Waves -- 6.7 Second-Order Nonlinear Planar Wavemaker Theory -- 6.8 Chaotic Cross Waves: Generalized Melnikov Method (GMM) and Liapunov Exponents -- 6.9 Problems -- 7 Deterministic Dynamics of Small Solid Bodies -- 7.1 Introduction -- 7.2 Small Body Hypothesis (Morison Equation) -- 7.3 Drag dFd and Inertia dFm Forces -- 7.3.1 Inertia Forces -- 7.4 Comparison Between a Fixed Cylinder in Accelerating Flow and an Accelerating Cylinder in Still Fluid -- 7.4.1 Accelerating Cylinder in Still Fluid -- 7.4.2 Fixed Cylinder in an Accelerating Flow -- 7.5 Maximum Static-Equivalent Force/Moment (Fixed-Free Beam) -- 7.6 Parametric Dependency of Force Coefficients Cm and Cd -- 7.6.1 Relative Importance of dFm(zi t) and dFd(zi t) -- 7.6.2 Computing the Force Coefficients Cm and Cd -- 7.6.3 Methods of Analyses -- 7.6.4 Linearized Drag Force -- 7.6.5 Laboratory U-Tube Data -- 7.6.6 Ocean Wave Data -- 7.7 The Dean Eccentricity Parameter and Data Condition -- 7.7.1 Dean Error Ellipse and Eccentricity Parameter E (Geometric) -- 7.7.2 Amplitude/Phase Method (Geometric) -- 7.7.3 Matrix Condition Numbers (Numerical) -- 7.8 Modified Wave Force Equation (WFE Relative Motion Morison Equation) -- 7.8.1 Articulated Circular Cylindrical Tower: SDOF System.

7.8.2 Two Semi-Immersed Horizontal Circular Cylinders: MDOF System -- 7.9 Transverse Forces on Bluff Solid Bodies -- 7.10 Stability of Marine Pipelines -- 7.11 Problems -- 8 Deterministic Dynamics of Large Solid Bodies -- 8.1 Dynamic Response of Large Bodies: An Overview -- 8.2 Linearized MDOF Large Solid Body Dynamics -- 8.2.1 Kinematic Body Boundary Conditions (KBBC) -- 8.2.2 Dynamic Body Boundary Condition (DBBC) -- 8.3 Froude-Kriloff Approximations for Potential Theory -- 8.3.1 Froude-Kriloff Load in 2-D Cartesian Coordinates -- 8.3.2 Froude-Kriloff Load in Circular Cylindrical Coordinates -- 8.4 Diffraction by a Full-Draft Vertical Circular Cylinder -- 8.5 Reciprocity Relationships -- 8.6 Green's Functions and Fredholm Integral Equations -- 8.6.1 Orthonormal Eigenfunction Expansion of Green's Function for 2D Wavemaker -- 8.7 Wave Loads Computed by the FEM -- 8.8 Problems -- 9 Real Ocean Waves -- 9.1 Introduction -- 9.2 Fourier Analyses -- 9.3 Ocean Wave Spectra -- 9.3.1 Generic Four-Parameter Wave Density Spectrum -- 9.3.2 Wave and Spectral Parameters Computed from Spectral Moments mn -- 9.3.3 Multi-Parameter Theoretical Spectra -- 9.3.4 Spectral Directional Spreading Functions -- 9.3.5 Confidence Intervals for FFT Estimates -- 9.4 Probability Functions for Random Waves -- 9.4.1 Gaussian (Normal) Probability Distribution -- 9.4.2 Rayleigh Probability Distribution -- 9.4.3 Distribution of the Maxima -- 9.5 Wave Groups -- 9.5.1 Resolving Incident and Reflected Random Wave Time Series -- 9.6 Random Wave Simulations -- 9.6.1 Conditional Wave Simulations -- 9.7 Data Analyses: An Example from Hurricane CARLA -- 9.8 Random Wave Forces on Small Circular Members -- 9.8.1 Probability Density Function p(Y) (pdf) and Covariance Function CFTFT(T) for Nondeterministic Wave Force per Unit Length for a Small Vertical Circular Pile.

9.8.2 Stochastic Response of Space-Frame Offshore Structure -- 9.9 Frequency Domain Input-Output Transfer Functions -- 9.10 Problems -- Bibliography -- Author Index -- Subject Index.

This book focuses on: (1) the physics of the fundamental dynamics of fluids and of semi-immersed Lagrangian solid bodies that are responding to wave-induced loads; (2) the scaling of dimensional equations and boundary value problems in order to determine a small dimensionless parameter ε that may be applied to linearize the equations and the boundary value problems so as to obtain a linear system; (3) the replacement of differential and integral calculus with algebraic equations that require only algebraic substitutions instead of differentiations and integrations; and (4) the importance of comparing numerical and analytical computations with data from laboratories and/or nature. Sample Chapter(s). Chapter 1: Introduction (135 KB). Contents: Mathematical Preliminaries; Fundamentals of Fluid Mechanics; Long-Crested, Linear Wave Theory (LWT); Wavemaker Theories; Nonlinear Wave Theories; Deterministic Dynamics of Small Solid Bodies; Deterministic Dynamics of Large Solid Bodies; Real Ocean Waves. Readership: Graduate students and practitioners in ocean and coastal engineering.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.