Handbook of Accelerator Physics and Engineering.

By: Chao, Alexander WuContributor(s): Mess, Karl-Hubert | Tigner, Maury | Zimmermann, FrankPublisher: Singapore : World Scientific Publishing Co Pte Ltd, 2013Copyright date: ©2013Edition: 2nd edDescription: 1 online resource (848 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9789814415859Subject(s): Particle accelerators -- Handbooks, manuals, etc.;Nuclear physics -- Handbooks, manuals, etcGenre/Form: Electronic books. Additional physical formats: Print version:: Handbook of Accelerator Physics and EngineeringDDC classification: 539.73 LOC classification: QC787.P3 -- H36 2013ebOnline resources: Click to View
Contents:
Intro -- Table of Contents -- Preface -- Acknowledgments to Second Edition -- Acknowledgments to First Edition -- 1 INTRODUCTION -- 1.1 HOW TO USE THIS BOOK -- 1.2 NOMENCLATURE -- 1.3 FUNDAMENTAL CONSTANTS -- References -- 1.4 UNITS AND CONVERSIONS -- 1.4.1 Units A.W. Chao -- References -- 1.4.2 Conversions M. Tigner -- 1.5 FUNDAMENTAL FORMULAE A.W. Chao -- 1.5.1 Special Functions -- 1.5.2 Curvilinear Coordinate Systems -- References -- 1.5.3 Electromagnetism -- 1.5.4 Kinematical Relations -- References -- 1.5.5 Vector Analysis -- 1.5.6 Relativity -- 1.6 GLOSSARY OF ACCELERATOR TYPES -- 1.6.1 Antiproton Sources K. Gollwitzer, J. Marriner -- References -- 1.6.2 Betatron M. Tigner -- References -- 1.6.3 Colliders D. Hartill -- References -- 1.6.4 Cyclotron H. Blosser, M. Craddock -- References -- 1.6.5 Electrostatic Accelerator J. Ferry -- References -- 1.6.6 FFAG Accelerator M.K. Craddock -- References -- 1.6.7 High Voltage Electrodynamic Accelerators M.R. Cleland -- References -- 1.6.8 Induction Linac R. Bangerter -- References -- 1.6.9 Industrial Accelerators R. Hellborg -- References -- 1.6.10 Laser, Wakefield and Plasma Accelerators J. Rosenzweig -- References -- 1.6.11 Linear Accelerators for Electrons G.A. Loew -- References -- 1.6.12 Linear Accelerators for Protons S. Henderson, A. Aleksandrov -- References -- 1.6.13 Livingston Chart D. Hartill -- References -- 1.6.14 Medical Applications of Accelerators J. Alonso -- 1.6.14.1 Radiation therapy -- 1.6.14.2 Radioisotopes -- References -- 1.6.15 μ+μ- Collider R. Palmer -- 1.6.15.1 Collider -- 1.6.15.2 Muon storage ring neutrino factories -- 1.6.15.3 Technical challenges -- References -- 1.6.16 Neutron Sources J. Wei, H. Lengeler -- References -- 1.6.17 Pulsed High Voltage Devices J.A. Nation, D.A. Hammer -- References -- 1.6.18 Radio Frequency Quadrupole J. Staples -- References.
1.6.19 Rhodotron Y. Jongen, M. Abs -- 1.6.20 Storage Rings W. Fischer -- References -- 1.6.21 Synchrotrons C. Zhang, S.X. Fang -- References -- 1.6.22 Two-Beam Accelerator J.P. Delahaye -- References -- 1.7 ACCELERATOR COMPUTER CODES R. Ryne -- 2 BEAM DYNAMICS -- 2.1 PHASE SPACE -- 2.1.1 Linear Betatron Motion D.A. Edwards, M.J. Syphers -- References -- 2.1.2 Longitudinal Motion D.A. Edwards, M.J. Syphers -- References -- 2.1.3 Linear Coupled System D.A. Edwards, M.J. Syphers -- References -- 2.1.4 Orbital Eigen-Analysis for Electron Storage Ring J.A. Ellison, H. Mais, G. Ripken -- References -- 2.2 OPTICS AND LATTICES -- 2.2.1 Single Element Optics K. Brown -- References -- 2.2.2 3-D Multipole Expansion, Calculation of Transfer Maps from Field Data, Fringe Fields M. Venturini, A. Dragt -- References -- 2.2.3 Lattices for Collider Storage Rings E. Keil -- References -- 2.2.4 Lattices for Low-Emittance Light Sources C. Steier -- 2.2.4.1 Lattice choices -- 2.2.4.2 Chromaticity correction and nonlinear optimization -- 2.2.4.3 Systematic lattice optimization techniques -- 2.2.4.4 Evolution of light source lattices -- 2.2.4.5 Ultimate storage rings -- References -- 2.2.5 Betatron Motion with Coupling of Two Degrees of Freedom V. Lebedev, A. Burov -- References -- 2.3 NONLINEAR DYNAMICS -- 2.3.1 Hamiltonian K. Symon -- 2.3.1.1 General case -- 2.3.1.2 Transverse motion -- 2.3.1.3 Longitudinal motion -- 2.3.1.4 Synchrobetatron coupling -- References -- 2.3.2 Tune Dependence on Momentum and Betatron Amplitudes D.A. Edwards, M.J. Syphers -- References -- 2.3.3 Nonlinear Resonances D.A. Edwards, M.J. Syphers -- References -- 2.3.4 Synchrobetatron Resonances A. Piwinski -- References -- 2.3.5 Taylor Map, Henon Map, Standard Map A. Dragt -- References -- 2.3.6 Lie Algebraic Methods A. Dragt -- References -- 2.3.7 Differential Algebraic Techniques M. Berz.
References -- 2.3.8 Symplectic Integration Methods H.Yoshida -- 2.3.8.1 Methods of realization -- 2.3.8.2 Symplectic method vs. nonsymplectic method -- References -- 2.3.9 Dynamic Aperture A. Wolski -- References -- 2.3.10 Decoherence M.A. Furman -- References -- 2.3.11 Momentum Compaction and Phase Slip Factor K.Y. Ng -- References -- 2.3.12 Nonlinear Dynamics Experiments W. Fischer -- References -- 2.3.13 Echo Effects G.V. Stupakov -- References -- 2.4 COLLECTIVE EFFECTS -- 2.4.1 Collective Effects in High Energy Electron Linacs K. Kubo, K. Yokoya, K. Thompson -- 2.4.1.1 Single bunch longitudinal dynamics -- 2.4.1.2 Multibunch longitudinal dynamics -- 2.4.1.3 Single bunch transverse dynamics -- 2.4.1.4 Multibunch transverse dynamics -- 2.4.1.5 Effects of structure misalignment -- References -- 2.4.2 Collective Effects in Energy Recovery Linacs G. Hoffstaetter -- References -- 2.4.3 Beam Loading D. Boussard -- 2.4.3.1 Single-bunch passage in a cavity -- 2.4.3.2 Cavity equivalent circuit -- 2.4.3.3 Transmission of small modulations (AM and PM) through a cavity with beam loading -- 2.4.3.4 Periodic beam loading at multiples of f0 -- 2.4.3.5 Rf power needed for transient beam-loading correction -- 2.4.3.6 Traveling-wave cavities -- References -- 2.4.4 Space-Charge Dominated Beams in Guns and Transport Lines M. Ferrario -- References -- 2.4.5 Space Charge Effects in Circular Accelerators B. Zotter -- 2.4.5.1 Direct space charge effects -- 2.4.5.2 Betatron frequency shifts -- References -- 2.4.6 Beam Dynamics in Proton Linacs S. Henderson, A. Aleksandrov -- References -- 2.4.7 Vlasov and Fokker-Planck Equations B. Zotter -- References -- 2.4.8 Potential Well Effect B. Zotter -- References -- 2.4.9 Single-Bunch Instabilities in Circular Accelerators B. Zotter -- References -- 2.4.10 Sacherer Formulae B. Zotter -- References.
2.4.11 Landau Damping K.Y. Ng -- References -- 2.4.12 Intrabeam Scattering and Touschek Effect V. Lebedev -- References -- 2.4.13 Ion Trapping, Beam-Ion Instabilities, and Dust F. Zimmermann -- 2.4.13.1 Ion trapping -- 2.4.13.2 Dust particles -- 2.4.13.3 Single-pass ion effects instorage rings and linacs -- References -- 2.4.14 Electron-Cloud Effect M.A. Furman -- References -- 2.4.15 Coherent Synchrotron Radiation Instability G. Stupakov -- References -- 2.5 BEAM-BEAM EFFECTS -- 2.5.1 Beam-Beam Effects in Storage Ring Colliders K. Hirata -- 2.5.1.1 Infinitely short bunches -- 2.5.1.2 Long bunches -- 2.5.1.3 Dispersion at IP, crossing angle -- References -- 2.5.2 Crab Waist Collision Scheme M. Zobov -- References -- 2.5.3 Beam-Beam Effects in Linear Colliders P. Chen, D. Schulte -- 2.5.3.1 Disruption -- 2.5.3.2 Beamstrahlung -- 2.5.3.3 Background and spent beam -- References -- 2.5.4 Parasitic Beam-Beam Effects and Separation Schemes J.M. Jowett -- 2.5.4.1 Separation schemes -- 2.5.4.2 Long-range beam-beam effects -- References -- 2.6 POLARIZATION -- 2.6.1 Thomas-BMT Equation T. Roser -- References -- 2.6.2 Spinor Algebra T. Roser -- 2.6.3 Spin Rotators and Siberian Snakes T. Roser -- References -- 2.6.4 Depolarizing Resonances and Spin Flippers T. Roser -- References -- 2.6.5 Polarized Hadron Beams and Siberian Snakes A.D. Krisch, M.A. Leonova -- References -- 2.6.6 Radiative Polarization in Electron Storage Rings D.P. Barber, G. Ripken -- References -- 2.6.7 Computing Algorithms for e-/e+ Polarization in Storage Rings D.P. Barber, G. Ripken -- References -- 2.6.8 Spin Matching in e-/e+ Rings D.P. Barber, G. Ripken -- References -- 2.6.9 Lie Algebra for Spin Motion K. Yokoya -- References -- 2.7 BEAM COOLING -- 2.7.1 Stochastic Cooling M. Blaskiewicz -- 2.7.1.1 Cooling rates -- 2.7.1.2 Hardware -- 2.7.1.3 New techniques -- References.
2.7.2 Electron Cooling S. Nagaitsev -- References -- 2.7.3 Laser Cooling J. Hangst, A. Noda -- References -- 2.7.4 Ionization Cooling D. Neuffer -- References -- 2.7.5 Crystalline Beam J. Wei -- References -- 3 ELECTROMAGNETIC AND NUCLEAR INTERACTIONS -- 3.1 SYNCHROTRON RADIATION -- 3.1.1 Radiation of a Point Charge H. Wiedemann -- References -- 3.1.2 Coherent Radiation H. Wiedemann -- References -- 3.1.3 Bending Magnet Radiation H. Wiedemann -- References -- 3.1.4 Synchrotron Radiation in Storage Rings H.Wiedemann -- 3.1.4.1 Radiation integrals -- 3.1.4.2 Radiation damping -- 3.1.4.3 Quantum excitation -- 3.1.4.4 Equilibrium beam emittances -- 3.1.4.5 Damping wigglers -- 3.1.4.6 Quantum lifetimes -- References -- 3.1.5 Undulator and Wiggler Radiation H. Wiedemann -- References -- 3.1.5.1 Polarization of synchrotron radiation H. Wiedemann -- References -- 3.1.6 Transition and Diffraction Radiation C. Thongbai -- References -- 3.1.7 Coherent Synchrotron Radiation S. Krinsky -- References -- 3.1.8 Free-Electron Lasers Z. Huang, P. Schm user -- References -- 3.1.9 Ultrashort X-ray Pulse Generation A. Zholents -- References -- 3.1.10 Compton/Thomson Sources G.A. Krafft -- 3.1.10.1 Luminosity description -- 3.1.10.2 Nonlinear scattering -- References -- 3.1.11 "Short" Magnet and Edge Radiation H. Wiedemann -- References -- 3.1.12 Beam Solid-Target Photon Physics K. Ispiryan -- References -- 3.2 IMPEDANCES AND WAKE FUNCTIONS -- 3.2.1 Definitions and Properties of Impedances and Wake Functions T. Suzuki -- References -- 3.2.2 Impedance Calculation, Frequency Domain R.L. Gluckstern, S.S. Kurennoy -- References -- 3.2.3 Impedance Calculation. Time Domain E. Gjonaj, T. Weiland -- References -- 3.2.4 Explicit Expressions of Impedances and Wake Functions K.Y. Ng, K. Bane -- References -- 3.2.5 Effective Impedance T. Suzuki -- References.
3.2.6 Parasitic Loss P. Wilson, B. Zotter, Y.-H. Chin.
Summary: Edited by internationally recognized authorities in the field, this expanded and updated new edition of the bestselling Handbook, containing more than 100 new articles, is aimed at the design and operation of modern particle accelerators. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of more than 2000 equations, 300 illustrations and 500 graphs and tables, here one will find, in addition to the common formulae of previous compilations, hard-to-find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world's most able practitioners of the art and science of accelerators.The eight chapters include both theoretical and practical matters as well as an extensive glossary of accelerator types. Chapters on beam dynamics and electromagnetic and nuclear interactions deal with linear and nonlinear single particle and collective effects including spin motion, beam-environment, beam-beam, beam-electron, beam-ion and intrabeam interactions. The impedance concept and related calculations are dealt with at length as are the instabilities associated with the various interactions mentioned. A chapter on operational considerations includes discussions on the assessment and correction of orbit and optics errors, real-time feedbacks, generation of short photon pulses, bunch compression, tuning of normal and superconducting linacs, energy recovery linacs, free electron lasers, cooling, space-charge compensation, brightness of light sources, collider luminosity optimization and collision schemes. Chapters on mechanical and electrical considerations present material data and important aspects of component design including heat transfer and refrigeration. Hardware systems for particle sources, feedback systems, confinement and acceleration (both normalSummary: conducting and superconducting) receive detailed treatment in a subsystems chapter, beam measurement techniques and apparatus being treated therein as well. The closing chapter gives data and methods for radiation protection computations as well as much data on radiation damage to various materials and devices.A detailed name and subject index is provided together with reliable references to the literature where the most detailed information available on all subjects treated can be found.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan
Available EBKAF00080220
Ebrary Ebrary Algeria
Available
Ebrary Ebrary Cyprus
Available
Ebrary Ebrary Egypt
Available
Ebrary Ebrary Libya
Available
Ebrary Ebrary Morocco
Available
Ebrary Ebrary Nepal
Available EBKNP00080220
Ebrary Ebrary Sudan

Access a wide range of magazines and books using Pressreader and Ebook central.

Enjoy your reading, British Council Sudan.

Available
Ebrary Ebrary Tunisia
Available
Total holds: 0

Intro -- Table of Contents -- Preface -- Acknowledgments to Second Edition -- Acknowledgments to First Edition -- 1 INTRODUCTION -- 1.1 HOW TO USE THIS BOOK -- 1.2 NOMENCLATURE -- 1.3 FUNDAMENTAL CONSTANTS -- References -- 1.4 UNITS AND CONVERSIONS -- 1.4.1 Units A.W. Chao -- References -- 1.4.2 Conversions M. Tigner -- 1.5 FUNDAMENTAL FORMULAE A.W. Chao -- 1.5.1 Special Functions -- 1.5.2 Curvilinear Coordinate Systems -- References -- 1.5.3 Electromagnetism -- 1.5.4 Kinematical Relations -- References -- 1.5.5 Vector Analysis -- 1.5.6 Relativity -- 1.6 GLOSSARY OF ACCELERATOR TYPES -- 1.6.1 Antiproton Sources K. Gollwitzer, J. Marriner -- References -- 1.6.2 Betatron M. Tigner -- References -- 1.6.3 Colliders D. Hartill -- References -- 1.6.4 Cyclotron H. Blosser, M. Craddock -- References -- 1.6.5 Electrostatic Accelerator J. Ferry -- References -- 1.6.6 FFAG Accelerator M.K. Craddock -- References -- 1.6.7 High Voltage Electrodynamic Accelerators M.R. Cleland -- References -- 1.6.8 Induction Linac R. Bangerter -- References -- 1.6.9 Industrial Accelerators R. Hellborg -- References -- 1.6.10 Laser, Wakefield and Plasma Accelerators J. Rosenzweig -- References -- 1.6.11 Linear Accelerators for Electrons G.A. Loew -- References -- 1.6.12 Linear Accelerators for Protons S. Henderson, A. Aleksandrov -- References -- 1.6.13 Livingston Chart D. Hartill -- References -- 1.6.14 Medical Applications of Accelerators J. Alonso -- 1.6.14.1 Radiation therapy -- 1.6.14.2 Radioisotopes -- References -- 1.6.15 μ+μ- Collider R. Palmer -- 1.6.15.1 Collider -- 1.6.15.2 Muon storage ring neutrino factories -- 1.6.15.3 Technical challenges -- References -- 1.6.16 Neutron Sources J. Wei, H. Lengeler -- References -- 1.6.17 Pulsed High Voltage Devices J.A. Nation, D.A. Hammer -- References -- 1.6.18 Radio Frequency Quadrupole J. Staples -- References.

1.6.19 Rhodotron Y. Jongen, M. Abs -- 1.6.20 Storage Rings W. Fischer -- References -- 1.6.21 Synchrotrons C. Zhang, S.X. Fang -- References -- 1.6.22 Two-Beam Accelerator J.P. Delahaye -- References -- 1.7 ACCELERATOR COMPUTER CODES R. Ryne -- 2 BEAM DYNAMICS -- 2.1 PHASE SPACE -- 2.1.1 Linear Betatron Motion D.A. Edwards, M.J. Syphers -- References -- 2.1.2 Longitudinal Motion D.A. Edwards, M.J. Syphers -- References -- 2.1.3 Linear Coupled System D.A. Edwards, M.J. Syphers -- References -- 2.1.4 Orbital Eigen-Analysis for Electron Storage Ring J.A. Ellison, H. Mais, G. Ripken -- References -- 2.2 OPTICS AND LATTICES -- 2.2.1 Single Element Optics K. Brown -- References -- 2.2.2 3-D Multipole Expansion, Calculation of Transfer Maps from Field Data, Fringe Fields M. Venturini, A. Dragt -- References -- 2.2.3 Lattices for Collider Storage Rings E. Keil -- References -- 2.2.4 Lattices for Low-Emittance Light Sources C. Steier -- 2.2.4.1 Lattice choices -- 2.2.4.2 Chromaticity correction and nonlinear optimization -- 2.2.4.3 Systematic lattice optimization techniques -- 2.2.4.4 Evolution of light source lattices -- 2.2.4.5 Ultimate storage rings -- References -- 2.2.5 Betatron Motion with Coupling of Two Degrees of Freedom V. Lebedev, A. Burov -- References -- 2.3 NONLINEAR DYNAMICS -- 2.3.1 Hamiltonian K. Symon -- 2.3.1.1 General case -- 2.3.1.2 Transverse motion -- 2.3.1.3 Longitudinal motion -- 2.3.1.4 Synchrobetatron coupling -- References -- 2.3.2 Tune Dependence on Momentum and Betatron Amplitudes D.A. Edwards, M.J. Syphers -- References -- 2.3.3 Nonlinear Resonances D.A. Edwards, M.J. Syphers -- References -- 2.3.4 Synchrobetatron Resonances A. Piwinski -- References -- 2.3.5 Taylor Map, Henon Map, Standard Map A. Dragt -- References -- 2.3.6 Lie Algebraic Methods A. Dragt -- References -- 2.3.7 Differential Algebraic Techniques M. Berz.

References -- 2.3.8 Symplectic Integration Methods H.Yoshida -- 2.3.8.1 Methods of realization -- 2.3.8.2 Symplectic method vs. nonsymplectic method -- References -- 2.3.9 Dynamic Aperture A. Wolski -- References -- 2.3.10 Decoherence M.A. Furman -- References -- 2.3.11 Momentum Compaction and Phase Slip Factor K.Y. Ng -- References -- 2.3.12 Nonlinear Dynamics Experiments W. Fischer -- References -- 2.3.13 Echo Effects G.V. Stupakov -- References -- 2.4 COLLECTIVE EFFECTS -- 2.4.1 Collective Effects in High Energy Electron Linacs K. Kubo, K. Yokoya, K. Thompson -- 2.4.1.1 Single bunch longitudinal dynamics -- 2.4.1.2 Multibunch longitudinal dynamics -- 2.4.1.3 Single bunch transverse dynamics -- 2.4.1.4 Multibunch transverse dynamics -- 2.4.1.5 Effects of structure misalignment -- References -- 2.4.2 Collective Effects in Energy Recovery Linacs G. Hoffstaetter -- References -- 2.4.3 Beam Loading D. Boussard -- 2.4.3.1 Single-bunch passage in a cavity -- 2.4.3.2 Cavity equivalent circuit -- 2.4.3.3 Transmission of small modulations (AM and PM) through a cavity with beam loading -- 2.4.3.4 Periodic beam loading at multiples of f0 -- 2.4.3.5 Rf power needed for transient beam-loading correction -- 2.4.3.6 Traveling-wave cavities -- References -- 2.4.4 Space-Charge Dominated Beams in Guns and Transport Lines M. Ferrario -- References -- 2.4.5 Space Charge Effects in Circular Accelerators B. Zotter -- 2.4.5.1 Direct space charge effects -- 2.4.5.2 Betatron frequency shifts -- References -- 2.4.6 Beam Dynamics in Proton Linacs S. Henderson, A. Aleksandrov -- References -- 2.4.7 Vlasov and Fokker-Planck Equations B. Zotter -- References -- 2.4.8 Potential Well Effect B. Zotter -- References -- 2.4.9 Single-Bunch Instabilities in Circular Accelerators B. Zotter -- References -- 2.4.10 Sacherer Formulae B. Zotter -- References.

2.4.11 Landau Damping K.Y. Ng -- References -- 2.4.12 Intrabeam Scattering and Touschek Effect V. Lebedev -- References -- 2.4.13 Ion Trapping, Beam-Ion Instabilities, and Dust F. Zimmermann -- 2.4.13.1 Ion trapping -- 2.4.13.2 Dust particles -- 2.4.13.3 Single-pass ion effects instorage rings and linacs -- References -- 2.4.14 Electron-Cloud Effect M.A. Furman -- References -- 2.4.15 Coherent Synchrotron Radiation Instability G. Stupakov -- References -- 2.5 BEAM-BEAM EFFECTS -- 2.5.1 Beam-Beam Effects in Storage Ring Colliders K. Hirata -- 2.5.1.1 Infinitely short bunches -- 2.5.1.2 Long bunches -- 2.5.1.3 Dispersion at IP, crossing angle -- References -- 2.5.2 Crab Waist Collision Scheme M. Zobov -- References -- 2.5.3 Beam-Beam Effects in Linear Colliders P. Chen, D. Schulte -- 2.5.3.1 Disruption -- 2.5.3.2 Beamstrahlung -- 2.5.3.3 Background and spent beam -- References -- 2.5.4 Parasitic Beam-Beam Effects and Separation Schemes J.M. Jowett -- 2.5.4.1 Separation schemes -- 2.5.4.2 Long-range beam-beam effects -- References -- 2.6 POLARIZATION -- 2.6.1 Thomas-BMT Equation T. Roser -- References -- 2.6.2 Spinor Algebra T. Roser -- 2.6.3 Spin Rotators and Siberian Snakes T. Roser -- References -- 2.6.4 Depolarizing Resonances and Spin Flippers T. Roser -- References -- 2.6.5 Polarized Hadron Beams and Siberian Snakes A.D. Krisch, M.A. Leonova -- References -- 2.6.6 Radiative Polarization in Electron Storage Rings D.P. Barber, G. Ripken -- References -- 2.6.7 Computing Algorithms for e-/e+ Polarization in Storage Rings D.P. Barber, G. Ripken -- References -- 2.6.8 Spin Matching in e-/e+ Rings D.P. Barber, G. Ripken -- References -- 2.6.9 Lie Algebra for Spin Motion K. Yokoya -- References -- 2.7 BEAM COOLING -- 2.7.1 Stochastic Cooling M. Blaskiewicz -- 2.7.1.1 Cooling rates -- 2.7.1.2 Hardware -- 2.7.1.3 New techniques -- References.

2.7.2 Electron Cooling S. Nagaitsev -- References -- 2.7.3 Laser Cooling J. Hangst, A. Noda -- References -- 2.7.4 Ionization Cooling D. Neuffer -- References -- 2.7.5 Crystalline Beam J. Wei -- References -- 3 ELECTROMAGNETIC AND NUCLEAR INTERACTIONS -- 3.1 SYNCHROTRON RADIATION -- 3.1.1 Radiation of a Point Charge H. Wiedemann -- References -- 3.1.2 Coherent Radiation H. Wiedemann -- References -- 3.1.3 Bending Magnet Radiation H. Wiedemann -- References -- 3.1.4 Synchrotron Radiation in Storage Rings H.Wiedemann -- 3.1.4.1 Radiation integrals -- 3.1.4.2 Radiation damping -- 3.1.4.3 Quantum excitation -- 3.1.4.4 Equilibrium beam emittances -- 3.1.4.5 Damping wigglers -- 3.1.4.6 Quantum lifetimes -- References -- 3.1.5 Undulator and Wiggler Radiation H. Wiedemann -- References -- 3.1.5.1 Polarization of synchrotron radiation H. Wiedemann -- References -- 3.1.6 Transition and Diffraction Radiation C. Thongbai -- References -- 3.1.7 Coherent Synchrotron Radiation S. Krinsky -- References -- 3.1.8 Free-Electron Lasers Z. Huang, P. Schm user -- References -- 3.1.9 Ultrashort X-ray Pulse Generation A. Zholents -- References -- 3.1.10 Compton/Thomson Sources G.A. Krafft -- 3.1.10.1 Luminosity description -- 3.1.10.2 Nonlinear scattering -- References -- 3.1.11 "Short" Magnet and Edge Radiation H. Wiedemann -- References -- 3.1.12 Beam Solid-Target Photon Physics K. Ispiryan -- References -- 3.2 IMPEDANCES AND WAKE FUNCTIONS -- 3.2.1 Definitions and Properties of Impedances and Wake Functions T. Suzuki -- References -- 3.2.2 Impedance Calculation, Frequency Domain R.L. Gluckstern, S.S. Kurennoy -- References -- 3.2.3 Impedance Calculation. Time Domain E. Gjonaj, T. Weiland -- References -- 3.2.4 Explicit Expressions of Impedances and Wake Functions K.Y. Ng, K. Bane -- References -- 3.2.5 Effective Impedance T. Suzuki -- References.

3.2.6 Parasitic Loss P. Wilson, B. Zotter, Y.-H. Chin.

Edited by internationally recognized authorities in the field, this expanded and updated new edition of the bestselling Handbook, containing more than 100 new articles, is aimed at the design and operation of modern particle accelerators. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of more than 2000 equations, 300 illustrations and 500 graphs and tables, here one will find, in addition to the common formulae of previous compilations, hard-to-find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world's most able practitioners of the art and science of accelerators.The eight chapters include both theoretical and practical matters as well as an extensive glossary of accelerator types. Chapters on beam dynamics and electromagnetic and nuclear interactions deal with linear and nonlinear single particle and collective effects including spin motion, beam-environment, beam-beam, beam-electron, beam-ion and intrabeam interactions. The impedance concept and related calculations are dealt with at length as are the instabilities associated with the various interactions mentioned. A chapter on operational considerations includes discussions on the assessment and correction of orbit and optics errors, real-time feedbacks, generation of short photon pulses, bunch compression, tuning of normal and superconducting linacs, energy recovery linacs, free electron lasers, cooling, space-charge compensation, brightness of light sources, collider luminosity optimization and collision schemes. Chapters on mechanical and electrical considerations present material data and important aspects of component design including heat transfer and refrigeration. Hardware systems for particle sources, feedback systems, confinement and acceleration (both normal

conducting and superconducting) receive detailed treatment in a subsystems chapter, beam measurement techniques and apparatus being treated therein as well. The closing chapter gives data and methods for radiation protection computations as well as much data on radiation damage to various materials and devices.A detailed name and subject index is provided together with reliable references to the literature where the most detailed information available on all subjects treated can be found.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.