Quantum Leap : From Dirac and Feynman, Across the Universe, to Human Body and Mind.

By: Ivancevic, Vladimir GContributor(s): Ivancevic, Tijana TPublisher: Singapore : World Scientific Publishing Co Pte Ltd, 2008Copyright date: ©2008Description: 1 online resource (856 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9789812819284Subject(s): Consciousness.;Feynman integrals.;Mind and body.;Physics -- Philosophy.;Quantum field theory.;Quantum theoryGenre/Form: Electronic books. Additional physical formats: Print version:: Quantum Leap : From Dirac and Feynman, Across the Universe, to Human Body and MindDDC classification: 530.12 LOC classification: QC174.12 -- .I927 2008ebOnline resources: Click to View
Contents:
Intro -- Contents -- Preface -- Acknowledgments -- 1. Introduction -- 1.1 Soft Introduction to Quantum Mechanics -- 1.2 Hilbert Space -- 1.2.1 Quantum Hilbert Space -- 1.2.2 Formal Hilbert Space -- 1.3 Human Intelligence, Mind and Reason -- 1.3.0.1 Human Reason -- 2. Elements of Quantum Mechanics -- 2.1 Basics of Non-Relativistic Quantum Mechanics -- 2.1.1 Canonical Quantization -- 2.1.2 Quantum States and Operators -- 2.1.3 Quantum Pictures -- 2.1.4 Spectrum of a Quantum Operator -- 2.1.5 General Representation Model -- 2.1.6 Direct Product Space -- 2.1.7 State-Space for n Quantum Particles -- 2.2 Relativistic Quantum Mechanics and Electrodynamics -- 2.2.1 Difficulties of the Relativistic Quantum Mechanics -- 2.2.2 Particles of Half-Odd Integral Spin -- 2.2.3 Particles of Integral Spin -- 2.2.4 Dirac's Electrodynamics Action Principle -- 2.2.5 Dirac Equation and Formal QED in Brief -- 2.2.6 Lorentzian Space-Time and Gravity -- 2.2.7 Unification of Fundamental Interactions -- 2.2.7.1 First Unification -- 3. Feynman Path Integrals -- 3.1 Path Integrals: Sums Over Histories -- 3.1.1 Intuition Behind a Path Integral -- 3.1.1.1 Classical Probability Concept -- 3.1.1.2 Quantum Probability Concept -- 3.1.1.3 Quantum Coherent States -- 3.1.1.4 Dirac's hbra | keti Transition Amplitude -- 3.1.1.5 Feynman's Sum-over-Histories -- 3.1.1.6 The Basic Form of a Path Integral -- 3.1.1.7 Adaptive Path Integral -- 3.1.2 Path Integral History -- 3.1.2.1 Extract from Feynman's Nobel Lecture -- 3.1.2.2 Lagrangian Path Integral -- 3.1.2.3 Hamiltonian Path Integral -- 3.1.2.4 Feynman-Kac Formula -- 3.1.2.5 Itˆo Formula -- 3.1.3 Path-Integral Quantization -- 3.1.3.1 Canonical versus Path-Integral Quantization -- 3.1.3.2 Elementary Applications -- 3.1.3.3 Sources -- 3.1.3.4 Fields -- 3.1.3.5 Gauges -- 3.1.3.6 Riemannian-Symplectic Geometries.
3.1.4 Statistical Mechanics via Path Integrals -- 3.1.5 Path-Integral Monte-Carlo Simulation -- 3.1.6 Sum over Geometries and Topologies -- 3.1.6.1 Simplicial Quantum Geometry -- 3.1.6.2 Discrete Gravitational Path Integrals -- 3.1.6.3 Regge Calculus -- 3.1.6.4 Lorentzian Path Integral -- 3.2 Dynamics of Quantum Fields -- 3.2.1 Path Integrals and Green's Functions -- 3.2.2 Topological Quantum Field Theory -- 3.2.3 TQFT and Seiberg-Witten Theory -- 3.2.3.1 SW Invariants and Monopole Equations -- 3.2.3.2 Topological Lagrangian -- 3.2.3.3 Quantum Field Theory -- 3.2.3.4 Dimensional Reduction and 3D Field Theory -- 3.2.3.5 Geometrical Interpretation -- 3.2.4 TQFTs Associated with SW-Monopoles -- 3.2.4.1 Dimensional Reduction -- 3.2.4.2 TQFTs of 3D Monopoles -- 3.2.4.3 Non-Abelian Case -- 3.3 Stringy Geometrodynamics -- 3.3.1 Stringy Actions and Amplitudes -- 3.3.1.1 Strings -- 3.3.1.2 Interactions -- 3.3.1.3 Loop Topology of Closed Surfaces -- 3.3.2 Transition Amplitudes for Strings -- 3.3.3 Weyl Invariance and Vertex Operator Formulation -- 3.3.4 More General Stringy Actions -- 3.3.5 Transition Amplitude for a Single Point Particle -- 3.3.6 Witten's Open String Field Theory -- 3.3.6.1 Operator Formulation of String Field Theory -- 3.3.6.2 Open Strings -- 3.3.6.3 Construction of Overlap Vertices -- 3.3.6.4 Transformation of String Fields -- 3.3.7 Topological Strings -- 3.3.8 Geometrical Transitions -- 3.3.9 Topological Strings and Black Hole Attractors -- 3.4 Non-Quantum Applications of Path Integrals -- 3.4.1 Stochastic Optimal Control -- 3.4.1.1 Path-Integral Formalism -- 3.4.1.2 Monte Carlo Sampling -- 3.4.2 Nonlinear Dynamics of Option Pricing -- 3.4.2.1 Theory and Simulations of Option Pricing -- 3.4.2.2 Option Pricing via Path Integrals -- 3.4.2.3 Continuum Limit and American Options -- 3.4.3 Dynamics of Complex Networks.
3.4.3.1 Continuum Limit of the Kuramoto Net -- 3.4.3.2 Path-Integral for Complex Networks -- 3.4.4 Cerebellum as a Neural Path-Integral -- 3.4.4.1 Spinal Autogenetic Reflex Control -- 3.4.4.2 Cerebellum - the Comparator -- 3.4.4.3 Hamiltonian Action and Neural Path Integral -- 3.4.5 Topological Phase Transitions and Hamiltonian Chaos -- 3.4.5.1 Phase Transitions in Hamiltonian Systems -- 3.4.5.2 Geometry of the Largest Lyapunov Exponent -- 3.4.5.3 Euler Characteristics of Hamiltonian Systems -- 4. Quantum Universe -- 4.1 Search for Quantum Gravity -- 4.1.1 What Is Quantum Gravity? -- 4.1.2 Main Approaches to Quantum Gravity -- 4.1.2.1 String Theory -- 4.1.2.2 Loop Quantum Gravity -- 4.1.3 Traditional Approaches to Quantum Gravity -- 4.1.3.1 Discrete Approaches -- 4.1.3.2 Hawking's Euclidean Quantum Gravity -- 4.1.3.3 Effective Perturbative Quantum Gravity -- 4.1.3.4 QFT in Curved Space-Time -- 4.1.3.5 New Approaches to Quantum Gravity -- 4.1.3.6 Hawking's Black Hole Entropy -- 4.2 Loop Quantum Gravity -- 4.2.1 Introduction to Loop Quantum Gravity -- 4.2.2 Formalism of Loop Quantum Gravity -- 4.2.3 Loop Algebra -- 4.2.4 Loop Quantum Gravity -- 4.2.5 Loop States and Spin Network States -- 4.2.6 Diagrammatic Representation of the States -- 4.2.7 Quantum Operators -- 4.2.8 Loop v.s. Connection Representation -- 4.3 Quantum Cosmology -- 4.3.1 Hawking's Cosmology in 'Plain English' -- 4.3.2 Theories of Everything, Anthropic Principle and Wave Function of the Universe -- 4.3.2.1 Quantum Mechanics -- 4.3.2.2 Scientific Reduction -- 4.3.2.3 Anthropic Reasoning in Quantum Cosmology -- 4.3.2.4 Quantum State of the Universe -- 4.3.2.5 From Quantum Mechanics to Quantum Gravity -- 4.3.3 Quantum Gravity and Black Holes -- 4.3.4 Generalized Quantum Mechanics -- 4.3.4.1 Quantum Mechanics Today -- 4.3.4.2 Spacetime and Quantum Theory.
4.3.4.3 The Quantum Mechanics of Closed Systems -- 4.3.4.4 Quantum Theory in 3+1 Form -- 4.3.4.5 Generalized Quantum Theory -- 4.3.4.6 A Quantum Theory of Spacetime Geometry -- 4.3.4.7 Beyond Spacetime -- 4.3.4.8 Emergence/Excess Baggage -- 4.3.4.9 Emergence of Signature -- 4.3.4.10 Beyond Quantum Theory -- 4.3.5 Anthropic String Landscape -- 4.3.5.1 The Landscape -- 4.3.5.2 The Trouble with de Sitter Space -- 4.3.5.3 De Sitter Space is Unstable -- 4.3.5.4 Bubble Cosmology -- 4.3.5.5 Cosmology as a Resonance -- 4.3.6 Top-Down Cosmology -- 4.3.6.1 Trace Anomaly Driven Inflation -- 4.3.6.2 Instability of Anomaly-Induced Inflation -- 4.3.6.3 Origin of Inflation -- 4.3.7 Cosmology in the String Landscape -- 4.3.7.1 Quantum State -- 4.3.7.2 Prediction in Quantum Cosmology -- 4.3.7.3 Anthropic Reasoning -- 4.3.7.4 Models of Inflation -- 4.3.7.5 Prediction in a Potential Landscape -- 4.3.7.6 Alternative Proposals -- 4.3.7.7 Interpretations -- 4.3.8 Brane Cosmology -- 4.3.8.1 The Randall-Sundrum Brane World -- 4.3.8.2 Including a Bulk Scalar Field -- 4.3.8.3 Moving Branes in a Static Bulk -- 4.3.8.4 Cosmology of a Two-Brane System -- 4.3.8.5 Brane Collision -- 4.3.8.6 Open Questions -- 4.3.9 Hawking's Brane New World -- 4.3.9.1 RS Scenario from AdS/CFT -- 4.3.9.2 CFT on the Domain Wall -- 4.3.9.3 The Total Action -- 4.3.9.4 Comparison with 4D Gravity -- 4.3.9.5 Summary on Hawking's Brane New World -- 4.3.10 Brane-World Quantum Cosmology -- 5. Quantum Biophysics in Human Body: Electro-Muscular Stimulation -- 5.1 Basics of Electrical Muscular Stimulation -- 5.2 EMS Functor -- 5.2.1 Global macro-level of EMStotal -- 5.2.2 Local Micro-Level of EMStotal -- 5.2.3 Micro-Level Adaptation and Muscular Training -- 5.3 Electrical Stimulation Fields: EMSfields -- 5.3.1 External Smooth Maxwell Electrodynamics -- 5.3.2 Internal Cellular Bio-Quantum Electrodynamics.
5.4 Stimulated Muscular Contraction Paths: EMSpaths -- 5.4.1 External Anatomical Muscular Mechanics -- 5.4.2 Internal Myofibrillar Bio-Quantum Mechanics -- 5.5 Anatomical Geometry of the Face & Body Shape: EMSgeom -- 5.5.1 External Face & Body Geometry -- 5.5.1.1 Facial Curvatures and Their Deviations -- 5.5.1.2 Facial Riemannian Patch-Manifold -- 5.5.2 Cellular Muscle-Fat Geometry -- 6. Quantum Games and Quantum Computers -- 6.1 Nash's Classical Game Theory -- 6.1.1 Basics of Classical Game Theory -- 6.1.2 Nash Equilibrium: The Focal Point of Game Theory -- 6.1.2.1 Background to Nash Equilibrium -- 6.1.2.2 The Rationalistic Interpretation -- 6.1.2.3 The Mass-Action Interpretation -- 6.2 Quantum Games -- 6.2.1 Quantum Strategies -- 6.2.2 Quantum Games -- 6.2.3 Two-Qubit Quantum Games -- 6.2.3.1 Prisoners' Dilemma -- 6.2.3.2 Chicken Game -- 6.2.4 Quantum Cryptography and Gambling -- 6.3 Formal Quantum Games -- 6.3.1 Formal Framework -- 6.3.2 Various Types of Formal Games -- 6.3.2.1 Strategic Games -- 6.3.2.2 Quantum Simultaneous Games -- 6.3.2.3 Quantum Sequential Games -- 6.3.3 Equivalence of Formal Games -- 6.3.4 Game Classes -- 6.3.5 Summary on Formal Quantum Games -- 6.4 Quantum Information and Computing -- 6.4.1 Entanglement, Teleportation and Information -- 6.4.2 Quantum Computing -- 6.4.2.1 Qubits and Quantum Parallelism -- 6.4.2.2 Quantum Computers -- 6.4.2.3 The Circuit Model for Quantum Computers -- 6.4.2.4 Elementary Quantum Algorithms -- 6.5 The Hardware for Quantum Computers -- 6.5.1 Josephson Effect and Pendulum Analog -- 6.5.1.1 Josephson Effect -- 6.5.1.2 Pendulum Analog -- 6.5.2 Dissipative Josephson Junction -- 6.5.2.1 Junction Hamiltonian and its Eigenstates -- 6.5.2.2 Transition Rate -- 6.5.3 Josephson Junction Ladder (JJL) -- 6.5.3.1 Underdamped JJL -- 6.5.4 Synchronization in Arrays of Josephson Junctions.
6.5.4.1 Phase Model for Underdamped JJL.
Summary: Key Features:Provides a self-contained and easily readable presentation of the field of quantum mechanics and quantum field theory, together with its relations to the universe as well as the human mind and bodyCan be used as a guide for cross-disciplinary works in biology, engineering, psychology, computer science and applied mathematicsContains a comprehensive bibliography and a detailed index on the subject of modern quantum physics and its applications.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan
Available EBKAF00080158
Ebrary Ebrary Algeria
Available
Ebrary Ebrary Cyprus
Available
Ebrary Ebrary Egypt
Available
Ebrary Ebrary Libya
Available
Ebrary Ebrary Morocco
Available
Ebrary Ebrary Nepal
Available EBKNP00080158
Ebrary Ebrary Sudan

Access a wide range of magazines and books using Pressreader and Ebook central.

Enjoy your reading, British Council Sudan.

Available
Ebrary Ebrary Tunisia
Available
Total holds: 0

Intro -- Contents -- Preface -- Acknowledgments -- 1. Introduction -- 1.1 Soft Introduction to Quantum Mechanics -- 1.2 Hilbert Space -- 1.2.1 Quantum Hilbert Space -- 1.2.2 Formal Hilbert Space -- 1.3 Human Intelligence, Mind and Reason -- 1.3.0.1 Human Reason -- 2. Elements of Quantum Mechanics -- 2.1 Basics of Non-Relativistic Quantum Mechanics -- 2.1.1 Canonical Quantization -- 2.1.2 Quantum States and Operators -- 2.1.3 Quantum Pictures -- 2.1.4 Spectrum of a Quantum Operator -- 2.1.5 General Representation Model -- 2.1.6 Direct Product Space -- 2.1.7 State-Space for n Quantum Particles -- 2.2 Relativistic Quantum Mechanics and Electrodynamics -- 2.2.1 Difficulties of the Relativistic Quantum Mechanics -- 2.2.2 Particles of Half-Odd Integral Spin -- 2.2.3 Particles of Integral Spin -- 2.2.4 Dirac's Electrodynamics Action Principle -- 2.2.5 Dirac Equation and Formal QED in Brief -- 2.2.6 Lorentzian Space-Time and Gravity -- 2.2.7 Unification of Fundamental Interactions -- 2.2.7.1 First Unification -- 3. Feynman Path Integrals -- 3.1 Path Integrals: Sums Over Histories -- 3.1.1 Intuition Behind a Path Integral -- 3.1.1.1 Classical Probability Concept -- 3.1.1.2 Quantum Probability Concept -- 3.1.1.3 Quantum Coherent States -- 3.1.1.4 Dirac's hbra | keti Transition Amplitude -- 3.1.1.5 Feynman's Sum-over-Histories -- 3.1.1.6 The Basic Form of a Path Integral -- 3.1.1.7 Adaptive Path Integral -- 3.1.2 Path Integral History -- 3.1.2.1 Extract from Feynman's Nobel Lecture -- 3.1.2.2 Lagrangian Path Integral -- 3.1.2.3 Hamiltonian Path Integral -- 3.1.2.4 Feynman-Kac Formula -- 3.1.2.5 Itˆo Formula -- 3.1.3 Path-Integral Quantization -- 3.1.3.1 Canonical versus Path-Integral Quantization -- 3.1.3.2 Elementary Applications -- 3.1.3.3 Sources -- 3.1.3.4 Fields -- 3.1.3.5 Gauges -- 3.1.3.6 Riemannian-Symplectic Geometries.

3.1.4 Statistical Mechanics via Path Integrals -- 3.1.5 Path-Integral Monte-Carlo Simulation -- 3.1.6 Sum over Geometries and Topologies -- 3.1.6.1 Simplicial Quantum Geometry -- 3.1.6.2 Discrete Gravitational Path Integrals -- 3.1.6.3 Regge Calculus -- 3.1.6.4 Lorentzian Path Integral -- 3.2 Dynamics of Quantum Fields -- 3.2.1 Path Integrals and Green's Functions -- 3.2.2 Topological Quantum Field Theory -- 3.2.3 TQFT and Seiberg-Witten Theory -- 3.2.3.1 SW Invariants and Monopole Equations -- 3.2.3.2 Topological Lagrangian -- 3.2.3.3 Quantum Field Theory -- 3.2.3.4 Dimensional Reduction and 3D Field Theory -- 3.2.3.5 Geometrical Interpretation -- 3.2.4 TQFTs Associated with SW-Monopoles -- 3.2.4.1 Dimensional Reduction -- 3.2.4.2 TQFTs of 3D Monopoles -- 3.2.4.3 Non-Abelian Case -- 3.3 Stringy Geometrodynamics -- 3.3.1 Stringy Actions and Amplitudes -- 3.3.1.1 Strings -- 3.3.1.2 Interactions -- 3.3.1.3 Loop Topology of Closed Surfaces -- 3.3.2 Transition Amplitudes for Strings -- 3.3.3 Weyl Invariance and Vertex Operator Formulation -- 3.3.4 More General Stringy Actions -- 3.3.5 Transition Amplitude for a Single Point Particle -- 3.3.6 Witten's Open String Field Theory -- 3.3.6.1 Operator Formulation of String Field Theory -- 3.3.6.2 Open Strings -- 3.3.6.3 Construction of Overlap Vertices -- 3.3.6.4 Transformation of String Fields -- 3.3.7 Topological Strings -- 3.3.8 Geometrical Transitions -- 3.3.9 Topological Strings and Black Hole Attractors -- 3.4 Non-Quantum Applications of Path Integrals -- 3.4.1 Stochastic Optimal Control -- 3.4.1.1 Path-Integral Formalism -- 3.4.1.2 Monte Carlo Sampling -- 3.4.2 Nonlinear Dynamics of Option Pricing -- 3.4.2.1 Theory and Simulations of Option Pricing -- 3.4.2.2 Option Pricing via Path Integrals -- 3.4.2.3 Continuum Limit and American Options -- 3.4.3 Dynamics of Complex Networks.

3.4.3.1 Continuum Limit of the Kuramoto Net -- 3.4.3.2 Path-Integral for Complex Networks -- 3.4.4 Cerebellum as a Neural Path-Integral -- 3.4.4.1 Spinal Autogenetic Reflex Control -- 3.4.4.2 Cerebellum - the Comparator -- 3.4.4.3 Hamiltonian Action and Neural Path Integral -- 3.4.5 Topological Phase Transitions and Hamiltonian Chaos -- 3.4.5.1 Phase Transitions in Hamiltonian Systems -- 3.4.5.2 Geometry of the Largest Lyapunov Exponent -- 3.4.5.3 Euler Characteristics of Hamiltonian Systems -- 4. Quantum Universe -- 4.1 Search for Quantum Gravity -- 4.1.1 What Is Quantum Gravity? -- 4.1.2 Main Approaches to Quantum Gravity -- 4.1.2.1 String Theory -- 4.1.2.2 Loop Quantum Gravity -- 4.1.3 Traditional Approaches to Quantum Gravity -- 4.1.3.1 Discrete Approaches -- 4.1.3.2 Hawking's Euclidean Quantum Gravity -- 4.1.3.3 Effective Perturbative Quantum Gravity -- 4.1.3.4 QFT in Curved Space-Time -- 4.1.3.5 New Approaches to Quantum Gravity -- 4.1.3.6 Hawking's Black Hole Entropy -- 4.2 Loop Quantum Gravity -- 4.2.1 Introduction to Loop Quantum Gravity -- 4.2.2 Formalism of Loop Quantum Gravity -- 4.2.3 Loop Algebra -- 4.2.4 Loop Quantum Gravity -- 4.2.5 Loop States and Spin Network States -- 4.2.6 Diagrammatic Representation of the States -- 4.2.7 Quantum Operators -- 4.2.8 Loop v.s. Connection Representation -- 4.3 Quantum Cosmology -- 4.3.1 Hawking's Cosmology in 'Plain English' -- 4.3.2 Theories of Everything, Anthropic Principle and Wave Function of the Universe -- 4.3.2.1 Quantum Mechanics -- 4.3.2.2 Scientific Reduction -- 4.3.2.3 Anthropic Reasoning in Quantum Cosmology -- 4.3.2.4 Quantum State of the Universe -- 4.3.2.5 From Quantum Mechanics to Quantum Gravity -- 4.3.3 Quantum Gravity and Black Holes -- 4.3.4 Generalized Quantum Mechanics -- 4.3.4.1 Quantum Mechanics Today -- 4.3.4.2 Spacetime and Quantum Theory.

4.3.4.3 The Quantum Mechanics of Closed Systems -- 4.3.4.4 Quantum Theory in 3+1 Form -- 4.3.4.5 Generalized Quantum Theory -- 4.3.4.6 A Quantum Theory of Spacetime Geometry -- 4.3.4.7 Beyond Spacetime -- 4.3.4.8 Emergence/Excess Baggage -- 4.3.4.9 Emergence of Signature -- 4.3.4.10 Beyond Quantum Theory -- 4.3.5 Anthropic String Landscape -- 4.3.5.1 The Landscape -- 4.3.5.2 The Trouble with de Sitter Space -- 4.3.5.3 De Sitter Space is Unstable -- 4.3.5.4 Bubble Cosmology -- 4.3.5.5 Cosmology as a Resonance -- 4.3.6 Top-Down Cosmology -- 4.3.6.1 Trace Anomaly Driven Inflation -- 4.3.6.2 Instability of Anomaly-Induced Inflation -- 4.3.6.3 Origin of Inflation -- 4.3.7 Cosmology in the String Landscape -- 4.3.7.1 Quantum State -- 4.3.7.2 Prediction in Quantum Cosmology -- 4.3.7.3 Anthropic Reasoning -- 4.3.7.4 Models of Inflation -- 4.3.7.5 Prediction in a Potential Landscape -- 4.3.7.6 Alternative Proposals -- 4.3.7.7 Interpretations -- 4.3.8 Brane Cosmology -- 4.3.8.1 The Randall-Sundrum Brane World -- 4.3.8.2 Including a Bulk Scalar Field -- 4.3.8.3 Moving Branes in a Static Bulk -- 4.3.8.4 Cosmology of a Two-Brane System -- 4.3.8.5 Brane Collision -- 4.3.8.6 Open Questions -- 4.3.9 Hawking's Brane New World -- 4.3.9.1 RS Scenario from AdS/CFT -- 4.3.9.2 CFT on the Domain Wall -- 4.3.9.3 The Total Action -- 4.3.9.4 Comparison with 4D Gravity -- 4.3.9.5 Summary on Hawking's Brane New World -- 4.3.10 Brane-World Quantum Cosmology -- 5. Quantum Biophysics in Human Body: Electro-Muscular Stimulation -- 5.1 Basics of Electrical Muscular Stimulation -- 5.2 EMS Functor -- 5.2.1 Global macro-level of EMStotal -- 5.2.2 Local Micro-Level of EMStotal -- 5.2.3 Micro-Level Adaptation and Muscular Training -- 5.3 Electrical Stimulation Fields: EMSfields -- 5.3.1 External Smooth Maxwell Electrodynamics -- 5.3.2 Internal Cellular Bio-Quantum Electrodynamics.

5.4 Stimulated Muscular Contraction Paths: EMSpaths -- 5.4.1 External Anatomical Muscular Mechanics -- 5.4.2 Internal Myofibrillar Bio-Quantum Mechanics -- 5.5 Anatomical Geometry of the Face & Body Shape: EMSgeom -- 5.5.1 External Face & Body Geometry -- 5.5.1.1 Facial Curvatures and Their Deviations -- 5.5.1.2 Facial Riemannian Patch-Manifold -- 5.5.2 Cellular Muscle-Fat Geometry -- 6. Quantum Games and Quantum Computers -- 6.1 Nash's Classical Game Theory -- 6.1.1 Basics of Classical Game Theory -- 6.1.2 Nash Equilibrium: The Focal Point of Game Theory -- 6.1.2.1 Background to Nash Equilibrium -- 6.1.2.2 The Rationalistic Interpretation -- 6.1.2.3 The Mass-Action Interpretation -- 6.2 Quantum Games -- 6.2.1 Quantum Strategies -- 6.2.2 Quantum Games -- 6.2.3 Two-Qubit Quantum Games -- 6.2.3.1 Prisoners' Dilemma -- 6.2.3.2 Chicken Game -- 6.2.4 Quantum Cryptography and Gambling -- 6.3 Formal Quantum Games -- 6.3.1 Formal Framework -- 6.3.2 Various Types of Formal Games -- 6.3.2.1 Strategic Games -- 6.3.2.2 Quantum Simultaneous Games -- 6.3.2.3 Quantum Sequential Games -- 6.3.3 Equivalence of Formal Games -- 6.3.4 Game Classes -- 6.3.5 Summary on Formal Quantum Games -- 6.4 Quantum Information and Computing -- 6.4.1 Entanglement, Teleportation and Information -- 6.4.2 Quantum Computing -- 6.4.2.1 Qubits and Quantum Parallelism -- 6.4.2.2 Quantum Computers -- 6.4.2.3 The Circuit Model for Quantum Computers -- 6.4.2.4 Elementary Quantum Algorithms -- 6.5 The Hardware for Quantum Computers -- 6.5.1 Josephson Effect and Pendulum Analog -- 6.5.1.1 Josephson Effect -- 6.5.1.2 Pendulum Analog -- 6.5.2 Dissipative Josephson Junction -- 6.5.2.1 Junction Hamiltonian and its Eigenstates -- 6.5.2.2 Transition Rate -- 6.5.3 Josephson Junction Ladder (JJL) -- 6.5.3.1 Underdamped JJL -- 6.5.4 Synchronization in Arrays of Josephson Junctions.

6.5.4.1 Phase Model for Underdamped JJL.

Key Features:Provides a self-contained and easily readable presentation of the field of quantum mechanics and quantum field theory, together with its relations to the universe as well as the human mind and bodyCan be used as a guide for cross-disciplinary works in biology, engineering, psychology, computer science and applied mathematicsContains a comprehensive bibliography and a detailed index on the subject of modern quantum physics and its applications.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.