Amazon cover image
Image from Amazon.com

Computational Fluid Dynamics : A Practical Approach.

By: Contributor(s): Publisher: London : Elsevier Science & Technology, 2012Copyright date: ©2013Edition: 2nd edDescription: 1 online resource (457 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780080982779
Subject(s): Genre/Form: Additional physical formats: Print version:: Computational Fluid Dynamics : A Practical ApproachDDC classification:
  • 532.05
LOC classification:
  • TA357 -- .T8 2013eb
Online resources:
Contents:
Front Cover -- Computational Fluid Dynamics: A Practical Approach -- Copyright -- Contents -- Preface to the First Edition -- Preface to the Second Edition -- Acknowledgments -- Chapter 1: Introduction -- 1.1. What is computational fluid dynamics? -- 1.2. Advantages of computational fluid dynamics -- 1.3. Application of computational fluid dynamics -- 1.3.1. As a Research Tool -- 1.3.2. As an Educational Tool in Basic Thermal-Fluid Science -- 1.3.3. As a Design Tool -- 1.3.4. Aerospace -- 1.3.5. Automotive Engineering -- 1.3.6. Biomedical Science and Engineering -- 1.3.7. Chemical and Mineral Processing -- 1.3.8. Civil and Environmental Engineering -- 1.3.9. Metallurgy -- 1.3.10. Nuclear Safety -- 1.3.11. Power Generation -- 1.3.12. Sports -- 1.4. The future of computational fluid dynamics -- 1.5. Summary -- Review questions -- Chapter 2: CFD Solution Procedure-A Beginning -- 2.1. Introduction -- 2.1.1. Shareware CFD -- 2.1.2. Commercial CFD -- 2.2. Problem setup-pre-process -- 2.2.1. Creation of Geometry-Step 1 -- 2.2.2. Mesh Generation-Step 2 -- 2.2.3. Selection of Physics and Fluid Properties-Step 3 -- 2.2.4. Specification of Boundary Conditions-Step 4 -- 2.3. Numerical solution-CFD solver -- 2.3.1. Initialization and Solution Control-Step 5 -- 2.3.2. Monitoring Convergence-Step 6 -- 2.4. Result Report and Visualization-Post-process -- 2.4.1. X-Y Plots -- 2.4.2. Vector Plots -- 2.4.3. Contour Plots -- 2.4.4. Other Plots -- 2.4.5. Data Report and Output -- 2.4.6. Animation -- 2.5. Summary -- Review questions -- Chapter 3: Governing Equations for CFD-Fundamentals -- 3.1. Introduction -- 3.2. The continuity equation -- 3.2.1. Mass Conservation -- 3.2.2. Physical Interpretation -- 3.2.3. Comments -- 3.3. The momentum equation -- 3.3.1. Force Balance -- 3.3.2. Physical Interpretation -- 3.3.3. Comments -- 3.4. The energy equation.
3.4.1. Energy Conservation -- 3.4.2. Physical Interpretation -- 3.4.3. Comments -- 3.5. The additional equations for turbulent flow -- 3.5.1. What Is Turbulence? -- 3.5.2. k-ε Two-Equation Turbulence Model -- 3.5.3. Comments -- 3.6. Generic form of the governing equations for CFD -- 3.7. Physical boundary conditions of the governing equations -- 3.8. Summary -- Review questions -- Chapter 4: CFD Techniques-The Basics -- 4.1. Introduction -- 4.2. Discretization of governing equations -- 4.2.1. Finite-Difference Method -- 4.2.2. Finite-Volume Method -- 4.2.3. Finite-Element Method -- 4.2.4. Spectral Method -- 4.3. Converting governing equations to algebraic equation system -- 4.3.1. Finite-Difference Method -- 4.3.2. Finite-Volume Method -- 4.3.3. Comparison of the Finite-Difference and Finite-Volume Discretizations -- 4.4. Numerical solutions to algebraic equations -- 4.4.1. Direct Methods -- 4.4.2. Iterative Methods -- 4.5. Pressure-velocity coupling-``simple´´ scheme -- 4.6. Multi-grid method -- 4.7. Summary -- Review questions -- Chapter 5: CFD Solution Analysis-Essentials -- 5.1. Introduction -- 5.2. Consistency -- 5.3. Stability -- 5.4. Convergence -- 5.4.1. What Is Convergence? -- 5.4.2. Residuals and Convergence Tolerance -- 5.4.3. Convergence Difficulty and Using Under-Relaxation -- 5.4.4. Accelerating Convergence -- 5.5. Accuracy -- 5.5.1. Source of Solution Errors -- 5.5.1.1. Discretization Error -- 5.5.1.2. Round-Off Error -- 5.5.1.3. Iteration or Convergence Error -- 5.5.1.4. Physical Modeling Error -- 5.5.1.5. Human Error -- 5.5.2. Controlling the Solution Errors -- 5.5.3. Verification and Validation -- 5.6. Efficiency -- 5.7. Case studies -- 5.7.1. Test Case A: Channel Flow -- 5.7.2. Test Case B: Flow over a 90o Bend -- 5.8. Summary -- Review questions -- Chapter 6: Practical Guidelines for CFD Simulation and Analysis.
6.1. Introduction -- 6.2. Guidelines on grid generation -- 6.2.1. Structured Mesh -- 6.2.2. Body-Fitted Mesh -- 6.2.3. Unstructured Mesh -- 6.2.4. Comments on Mesh Topology -- 6.2.5. Guidelines for Grid Quality and Grid Design -- 6.2.6. Local Refinement and Solution Adaptation -- 6.3. Guidelines for boundary conditions -- 6.3.1. Overview of Setting Boundary Conditions -- 6.3.2. Guidelines for Inlet Boundary Conditions -- 6.3.3. Guidelines for Outlet Boundary Conditions -- 6.3.4. Guidelines for Wall Boundary Conditions -- 6.3.5. Guidelines for Symmetry and Periodic Boundary Conditions -- 6.4. Guidelines for turbulence modeling -- 6.4.1. Overview of Turbulence-Modeling Approaches -- 6.4.2. Strategy for Selecting Turbulence Models -- 6.4.3. Near-Wall Treatments -- 6.4.4. Setting Boundary Conditions -- 6.4.5. Test Case: Assessment of Two-Equation Turbulence Modeling for Hydrofoil Flows -- 6.5. Summary -- Review questions -- Chapter 7: Some Applications of CFD with Examples -- 7.1. Introduction -- 7.2. To assist in the design process-as a design tool -- 7.2.1. Indoor Air-Flow Distribution -- 7.3. To enhance understanding-as a research tool -- 7.3.1. Gas-Particle Flow in a 90o Bend -- 7.4. Other important applications -- 7.4.1. Heat Transfer Coupled with Fluid Flow -- 7.4.1.1. Heat Exchanger -- 7.4.1.2. Conjugate and Radiation Heat Transfer11The materials in this section were provided by David Wassink and Mark Ho, wor -- 7.4.2. A Buoyant Free-Standing Fire -- 7.4.3. Flow over Vehicle Platoon -- 7.4.4. Air/Particle Flow in the Human Nasal Cavity -- 7.4.5. High-Speed Flows -- 7.4.5.1. Supersonic Flow over a Flat Plate -- 7.4.5.2. Subsonic and Supersonic Flows over a Wing -- 7.5. Summary -- Review questions -- Chapter 8: Some Advanced Topics in CFD -- 8.1. Introduction -- 8.2. Advances in numerical methods and techniques -- 8.2.1. Incompressible Flows.
8.2.2. Compressible Flows -- 8.2.2.1. High-Resolution Schemes -- 8.2.2.2. Adaptive Meshing -- 8.2.3. Moving Grids -- 8.2.4. Multi-Grid Methods -- 8.2.5. Parallel Computing -- 8.2.6. Immersed Boundary Methods -- 8.3. Advances in computational models -- 8.3.1. Direct Numerical Simulation -- 8.3.2. Large Eddy Simulation (LES) -- 8.3.3. RANS-LES Coupling for Turbulent Flows -- 8.3.4. Multi-Phase Flows -- 8.3.5. Combustion -- 8.3.6. Fluid-Structure Interaction -- 8.3.7. Physiological Fluid Dynamics -- 8.4. Other numerical approaches for CFD -- 8.4.1. Lattice Boltzmann Method -- 8.4.2. Monte-Carlo Method -- 8.4.3. Particle Methods -- 8.4.4. Discrete Element Method -- 8.5. Summary -- Review questions -- Appendix A: Full Derivation of Conservation Equations -- Appendix B: Upwind Schemes -- Appendix C: Explicit and Implicit Methods -- Appendix D: Learning Program -- Learning Program for a One-Semester CFD Course -- Appendix E: CFD Assignments and Guideline for CFD Project -- Assignment 1 -- Background and Aim -- Problem Description -- Instructions -- Assignment 2 -- Background and Aim -- Problem Description -- Single-Car Configuration -- Instructions -- Drafting Configuration -- Instructions -- Assignment 3 -- Background and Aim -- Problem Description -- Instructions -- Project Guideline -- Aim -- Objectives -- Example-CFD Project proposal prepared by the student -- Introduction -- Scope -- Objectives -- Other Topics for CFD Projects -- CFD Project A: CFD Simulation of Turbulent Flow over a Backward-Facing Step -- Background -- Objectives -- Problem Description -- Required Discussions -- CFD Project B: CFD Simulation of Pickup Trucks with Open/Closed Beds -- Background -- Objectives -- Problem Description -- Required Discussions -- Addendum -- CFD Project C: Investigation of Cooling Electronic Components within a Computer -- Background -- Objectives.
Problem Description -- Required Discussions -- References -- Index.
Summary: An introduction to CFD fundamentals and using commercial CFD software to solve engineering problems, designed for the wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step by step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. The first book in the field aimed at CFD users rather than developers. New to this edition: A more comprehensive coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method Coverage of different approaches to CFD grid generation in order to closely match how CFD meshing is being used in industry Additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used 20% new content.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan Available EBKAF00068751
Ebrary Ebrary Algeria Available
Ebrary Ebrary Cyprus Available
Ebrary Ebrary Egypt Available
Ebrary Ebrary Libya Available
Ebrary Ebrary Morocco Available
Ebrary Ebrary Nepal Available EBKNP00068751
Ebrary Ebrary Sudan Available
Ebrary Ebrary Tunisia Available
Total holds: 0

Front Cover -- Computational Fluid Dynamics: A Practical Approach -- Copyright -- Contents -- Preface to the First Edition -- Preface to the Second Edition -- Acknowledgments -- Chapter 1: Introduction -- 1.1. What is computational fluid dynamics? -- 1.2. Advantages of computational fluid dynamics -- 1.3. Application of computational fluid dynamics -- 1.3.1. As a Research Tool -- 1.3.2. As an Educational Tool in Basic Thermal-Fluid Science -- 1.3.3. As a Design Tool -- 1.3.4. Aerospace -- 1.3.5. Automotive Engineering -- 1.3.6. Biomedical Science and Engineering -- 1.3.7. Chemical and Mineral Processing -- 1.3.8. Civil and Environmental Engineering -- 1.3.9. Metallurgy -- 1.3.10. Nuclear Safety -- 1.3.11. Power Generation -- 1.3.12. Sports -- 1.4. The future of computational fluid dynamics -- 1.5. Summary -- Review questions -- Chapter 2: CFD Solution Procedure-A Beginning -- 2.1. Introduction -- 2.1.1. Shareware CFD -- 2.1.2. Commercial CFD -- 2.2. Problem setup-pre-process -- 2.2.1. Creation of Geometry-Step 1 -- 2.2.2. Mesh Generation-Step 2 -- 2.2.3. Selection of Physics and Fluid Properties-Step 3 -- 2.2.4. Specification of Boundary Conditions-Step 4 -- 2.3. Numerical solution-CFD solver -- 2.3.1. Initialization and Solution Control-Step 5 -- 2.3.2. Monitoring Convergence-Step 6 -- 2.4. Result Report and Visualization-Post-process -- 2.4.1. X-Y Plots -- 2.4.2. Vector Plots -- 2.4.3. Contour Plots -- 2.4.4. Other Plots -- 2.4.5. Data Report and Output -- 2.4.6. Animation -- 2.5. Summary -- Review questions -- Chapter 3: Governing Equations for CFD-Fundamentals -- 3.1. Introduction -- 3.2. The continuity equation -- 3.2.1. Mass Conservation -- 3.2.2. Physical Interpretation -- 3.2.3. Comments -- 3.3. The momentum equation -- 3.3.1. Force Balance -- 3.3.2. Physical Interpretation -- 3.3.3. Comments -- 3.4. The energy equation.

3.4.1. Energy Conservation -- 3.4.2. Physical Interpretation -- 3.4.3. Comments -- 3.5. The additional equations for turbulent flow -- 3.5.1. What Is Turbulence? -- 3.5.2. k-ε Two-Equation Turbulence Model -- 3.5.3. Comments -- 3.6. Generic form of the governing equations for CFD -- 3.7. Physical boundary conditions of the governing equations -- 3.8. Summary -- Review questions -- Chapter 4: CFD Techniques-The Basics -- 4.1. Introduction -- 4.2. Discretization of governing equations -- 4.2.1. Finite-Difference Method -- 4.2.2. Finite-Volume Method -- 4.2.3. Finite-Element Method -- 4.2.4. Spectral Method -- 4.3. Converting governing equations to algebraic equation system -- 4.3.1. Finite-Difference Method -- 4.3.2. Finite-Volume Method -- 4.3.3. Comparison of the Finite-Difference and Finite-Volume Discretizations -- 4.4. Numerical solutions to algebraic equations -- 4.4.1. Direct Methods -- 4.4.2. Iterative Methods -- 4.5. Pressure-velocity coupling-``simple´´ scheme -- 4.6. Multi-grid method -- 4.7. Summary -- Review questions -- Chapter 5: CFD Solution Analysis-Essentials -- 5.1. Introduction -- 5.2. Consistency -- 5.3. Stability -- 5.4. Convergence -- 5.4.1. What Is Convergence? -- 5.4.2. Residuals and Convergence Tolerance -- 5.4.3. Convergence Difficulty and Using Under-Relaxation -- 5.4.4. Accelerating Convergence -- 5.5. Accuracy -- 5.5.1. Source of Solution Errors -- 5.5.1.1. Discretization Error -- 5.5.1.2. Round-Off Error -- 5.5.1.3. Iteration or Convergence Error -- 5.5.1.4. Physical Modeling Error -- 5.5.1.5. Human Error -- 5.5.2. Controlling the Solution Errors -- 5.5.3. Verification and Validation -- 5.6. Efficiency -- 5.7. Case studies -- 5.7.1. Test Case A: Channel Flow -- 5.7.2. Test Case B: Flow over a 90o Bend -- 5.8. Summary -- Review questions -- Chapter 6: Practical Guidelines for CFD Simulation and Analysis.

6.1. Introduction -- 6.2. Guidelines on grid generation -- 6.2.1. Structured Mesh -- 6.2.2. Body-Fitted Mesh -- 6.2.3. Unstructured Mesh -- 6.2.4. Comments on Mesh Topology -- 6.2.5. Guidelines for Grid Quality and Grid Design -- 6.2.6. Local Refinement and Solution Adaptation -- 6.3. Guidelines for boundary conditions -- 6.3.1. Overview of Setting Boundary Conditions -- 6.3.2. Guidelines for Inlet Boundary Conditions -- 6.3.3. Guidelines for Outlet Boundary Conditions -- 6.3.4. Guidelines for Wall Boundary Conditions -- 6.3.5. Guidelines for Symmetry and Periodic Boundary Conditions -- 6.4. Guidelines for turbulence modeling -- 6.4.1. Overview of Turbulence-Modeling Approaches -- 6.4.2. Strategy for Selecting Turbulence Models -- 6.4.3. Near-Wall Treatments -- 6.4.4. Setting Boundary Conditions -- 6.4.5. Test Case: Assessment of Two-Equation Turbulence Modeling for Hydrofoil Flows -- 6.5. Summary -- Review questions -- Chapter 7: Some Applications of CFD with Examples -- 7.1. Introduction -- 7.2. To assist in the design process-as a design tool -- 7.2.1. Indoor Air-Flow Distribution -- 7.3. To enhance understanding-as a research tool -- 7.3.1. Gas-Particle Flow in a 90o Bend -- 7.4. Other important applications -- 7.4.1. Heat Transfer Coupled with Fluid Flow -- 7.4.1.1. Heat Exchanger -- 7.4.1.2. Conjugate and Radiation Heat Transfer11The materials in this section were provided by David Wassink and Mark Ho, wor -- 7.4.2. A Buoyant Free-Standing Fire -- 7.4.3. Flow over Vehicle Platoon -- 7.4.4. Air/Particle Flow in the Human Nasal Cavity -- 7.4.5. High-Speed Flows -- 7.4.5.1. Supersonic Flow over a Flat Plate -- 7.4.5.2. Subsonic and Supersonic Flows over a Wing -- 7.5. Summary -- Review questions -- Chapter 8: Some Advanced Topics in CFD -- 8.1. Introduction -- 8.2. Advances in numerical methods and techniques -- 8.2.1. Incompressible Flows.

8.2.2. Compressible Flows -- 8.2.2.1. High-Resolution Schemes -- 8.2.2.2. Adaptive Meshing -- 8.2.3. Moving Grids -- 8.2.4. Multi-Grid Methods -- 8.2.5. Parallel Computing -- 8.2.6. Immersed Boundary Methods -- 8.3. Advances in computational models -- 8.3.1. Direct Numerical Simulation -- 8.3.2. Large Eddy Simulation (LES) -- 8.3.3. RANS-LES Coupling for Turbulent Flows -- 8.3.4. Multi-Phase Flows -- 8.3.5. Combustion -- 8.3.6. Fluid-Structure Interaction -- 8.3.7. Physiological Fluid Dynamics -- 8.4. Other numerical approaches for CFD -- 8.4.1. Lattice Boltzmann Method -- 8.4.2. Monte-Carlo Method -- 8.4.3. Particle Methods -- 8.4.4. Discrete Element Method -- 8.5. Summary -- Review questions -- Appendix A: Full Derivation of Conservation Equations -- Appendix B: Upwind Schemes -- Appendix C: Explicit and Implicit Methods -- Appendix D: Learning Program -- Learning Program for a One-Semester CFD Course -- Appendix E: CFD Assignments and Guideline for CFD Project -- Assignment 1 -- Background and Aim -- Problem Description -- Instructions -- Assignment 2 -- Background and Aim -- Problem Description -- Single-Car Configuration -- Instructions -- Drafting Configuration -- Instructions -- Assignment 3 -- Background and Aim -- Problem Description -- Instructions -- Project Guideline -- Aim -- Objectives -- Example-CFD Project proposal prepared by the student -- Introduction -- Scope -- Objectives -- Other Topics for CFD Projects -- CFD Project A: CFD Simulation of Turbulent Flow over a Backward-Facing Step -- Background -- Objectives -- Problem Description -- Required Discussions -- CFD Project B: CFD Simulation of Pickup Trucks with Open/Closed Beds -- Background -- Objectives -- Problem Description -- Required Discussions -- Addendum -- CFD Project C: Investigation of Cooling Electronic Components within a Computer -- Background -- Objectives.

Problem Description -- Required Discussions -- References -- Index.

An introduction to CFD fundamentals and using commercial CFD software to solve engineering problems, designed for the wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step by step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. The first book in the field aimed at CFD users rather than developers. New to this edition: A more comprehensive coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method Coverage of different approaches to CFD grid generation in order to closely match how CFD meshing is being used in industry Additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used 20% new content.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.