A Physical Introduction to Suspension Dynamics.

By: Guazzelli, ÉlisabethContributor(s): Morris, Jeffrey F | Pic, SylvieSeries: Cambridge Texts in Applied MathematicsPublisher: Cambridge : Cambridge University Press, 2011Copyright date: ©2011Description: 1 online resource (244 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9781139185134Subject(s): Fluid dynamicsGenre/Form: Electronic books. Additional physical formats: Print version:: A Physical Introduction to Suspension DynamicsDDC classification: 532.05 LOC classification: QC151.7 .P97 2012Online resources: Click to View
Contents:
Cover -- A Physical Introduction to Suspension Dynamics -- Dedication -- Title -- Copyright -- Contents -- Preface -- Prologue -- Part I MICROHYDRODYNAMICS -- 1 Basic concepts in viscous flow -- 1.1 The fluid dynamic equations -- 1.2 Scaling arguments and the Stokes approximation -- 1.3 Buoyancy and drag -- 1.4 Properties of Stokes flow -- 1.4.1 Linearity -- 1.4.2 Reversibility -- 1.4.3 Instantaneity -- 1.4.4 And more … -- Appendix: Three Stokes-flow theorems -- A.1 Minimum energy dissipation -- A.2 A corollary: Uniqueness -- A.3 Reciprocal theorem -- Exercises -- 2 One sphere in Stokes flow -- 2.1 Three single sphere flows: rotation, translation, straining -- 2.1.1 Rotation -- 2.1.2 Translation -- 2.1.3 Straining -- 2.2 Hydrodynamic force, torque, and stresslet -- 2.2.1 Force -- 2.2.2 Torque -- 2.2.3 Stresslet -- 2.2.4 Computing the hydrodynamic force -- 2.3 Faxén laws for the sphere -- 2.4 A sphere in simple shear flow -- Exercises -- 3 Toward more sophisticated solution techniques -- 3.1 Point force solution -- 3.2 Point torque and stresslet -- 3.3 Integral representation -- 3.4 Multipole representation -- 3.5 Resistance matrices -- 3.6 Motion of different types of particles -- 3.7 Slender-body theory -- 3.8 Boundary integral method -- Exercises -- 4 Particle pair interactions -- 4.1 A sedimenting pair -- The method of reflections -- 4.2 A pair in shear -- 4.3 Pair lubrication interactions -- Two spheres in squeeze flow -- 4.4 Stokesian Dynamics -- Interlude FROM THE MICROSCOPIC TO THE MACROSCOPIC -- 5 A short presentation of statistical and stochastic concepts -- 5.1 Statistical physics -- 5.2 Averaging concepts -- 5.2.1 Ensemble and other averages -- 5.2.2 Probability distributions -- 5.3 Fluctuational motion -- 5.3.1 Random walks and diffusion -- 5.3.2 Brownian motion -- 5.4 Two routes to diffusive dynamics.
5.4.1 A macroscopic approach: Stokes-Einstein relation and Smoluchowski equation -- 5.4.2 A microscopic approach: Langevin equation -- 5.5 Chaotic dynamics -- Part II TOWARD A DESCRIPTION OF MACROSCOPIC PHENOMENA IN SUSPENSIONS -- 6 Sedimentation -- 6.1 One, two, three…spheres -- 6.2 Clusters and clouds -- 6.3 Settling of a suspension of spheres -- 6.4 Influence of the lateral walls of the vessel: Intrinsic convection -- 6.5 Velocity fluctuations and hydrodynamic diffusion -- 6.6 Fronts -- 6.7 Settling of particles in an inclined vessel: Boycott effect -- 6.8 More on polydispersity and anisotropy -- 7 Shear flow -- 7.1 Suspension viscosity -- 7.1.1 Computing the Einstein viscosity -- 7.1.2 First effects of particle interaction on μs -- 7.2 Non-Newtonian rheology in suspensions -- 7.2.1 Rate and time dependence of viscosity -- 7.2.2 Normal stresses in suspensions -- 7.2.3 Stress mechanisms -- 7.3 Microstructure of sheared suspensions -- 7.3.1 Concentrated suspension microstructure -- 7.3.2 Smoluchowski theory of suspension microstructure -- Equilibrium structure -- Scaled Smoluchowski equation -- Small Pe -- Large Pe -- 7.4 Constitutive modeling of suspension stress -- 7.5 Irreversible dynamics in shear flow -- 7.5.1 Shear-induced diffusion -- 7.5.2 Shear-induced migration -- Two-fluid analysis -- 7.6 Orientable particles -- 8 Beyond Stokes flow: Finite inertia -- 8.1 Limit of the Stokes approximation -- 8.1.1 Influence of inertia far from a body -- 8.1.2 Oseen solution for a translating sphere -- 8.2 Settling spheres at finite inertia -- 8.3 Migration under dilute conditions in pressure-driven flow -- 8.3.1 Observations -- 8.3.2 Analytical approaches -- 8.4 Particle motion in finite-Re simple-shear flow -- 8.5 Weak-inertia rheology -- Epilogue -- References -- Index.
Summary: Opens up the field by introducing theoretical, mathematical concepts in physical form through examples.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan
Available EBKAF00056864
Ebrary Ebrary Algeria
Available
Ebrary Ebrary Cyprus
Available
Ebrary Ebrary Egypt
Available
Ebrary Ebrary Libya
Available
Ebrary Ebrary Morocco
Available
Ebrary Ebrary Nepal
Available EBKNP00056864
Ebrary Ebrary Sudan

Access a wide range of magazines and books using Pressreader and Ebook central.

Enjoy your reading, British Council Sudan.

Available
Ebrary Ebrary Tunisia
Available
Total holds: 0

Cover -- A Physical Introduction to Suspension Dynamics -- Dedication -- Title -- Copyright -- Contents -- Preface -- Prologue -- Part I MICROHYDRODYNAMICS -- 1 Basic concepts in viscous flow -- 1.1 The fluid dynamic equations -- 1.2 Scaling arguments and the Stokes approximation -- 1.3 Buoyancy and drag -- 1.4 Properties of Stokes flow -- 1.4.1 Linearity -- 1.4.2 Reversibility -- 1.4.3 Instantaneity -- 1.4.4 And more … -- Appendix: Three Stokes-flow theorems -- A.1 Minimum energy dissipation -- A.2 A corollary: Uniqueness -- A.3 Reciprocal theorem -- Exercises -- 2 One sphere in Stokes flow -- 2.1 Three single sphere flows: rotation, translation, straining -- 2.1.1 Rotation -- 2.1.2 Translation -- 2.1.3 Straining -- 2.2 Hydrodynamic force, torque, and stresslet -- 2.2.1 Force -- 2.2.2 Torque -- 2.2.3 Stresslet -- 2.2.4 Computing the hydrodynamic force -- 2.3 Faxén laws for the sphere -- 2.4 A sphere in simple shear flow -- Exercises -- 3 Toward more sophisticated solution techniques -- 3.1 Point force solution -- 3.2 Point torque and stresslet -- 3.3 Integral representation -- 3.4 Multipole representation -- 3.5 Resistance matrices -- 3.6 Motion of different types of particles -- 3.7 Slender-body theory -- 3.8 Boundary integral method -- Exercises -- 4 Particle pair interactions -- 4.1 A sedimenting pair -- The method of reflections -- 4.2 A pair in shear -- 4.3 Pair lubrication interactions -- Two spheres in squeeze flow -- 4.4 Stokesian Dynamics -- Interlude FROM THE MICROSCOPIC TO THE MACROSCOPIC -- 5 A short presentation of statistical and stochastic concepts -- 5.1 Statistical physics -- 5.2 Averaging concepts -- 5.2.1 Ensemble and other averages -- 5.2.2 Probability distributions -- 5.3 Fluctuational motion -- 5.3.1 Random walks and diffusion -- 5.3.2 Brownian motion -- 5.4 Two routes to diffusive dynamics.

5.4.1 A macroscopic approach: Stokes-Einstein relation and Smoluchowski equation -- 5.4.2 A microscopic approach: Langevin equation -- 5.5 Chaotic dynamics -- Part II TOWARD A DESCRIPTION OF MACROSCOPIC PHENOMENA IN SUSPENSIONS -- 6 Sedimentation -- 6.1 One, two, three…spheres -- 6.2 Clusters and clouds -- 6.3 Settling of a suspension of spheres -- 6.4 Influence of the lateral walls of the vessel: Intrinsic convection -- 6.5 Velocity fluctuations and hydrodynamic diffusion -- 6.6 Fronts -- 6.7 Settling of particles in an inclined vessel: Boycott effect -- 6.8 More on polydispersity and anisotropy -- 7 Shear flow -- 7.1 Suspension viscosity -- 7.1.1 Computing the Einstein viscosity -- 7.1.2 First effects of particle interaction on μs -- 7.2 Non-Newtonian rheology in suspensions -- 7.2.1 Rate and time dependence of viscosity -- 7.2.2 Normal stresses in suspensions -- 7.2.3 Stress mechanisms -- 7.3 Microstructure of sheared suspensions -- 7.3.1 Concentrated suspension microstructure -- 7.3.2 Smoluchowski theory of suspension microstructure -- Equilibrium structure -- Scaled Smoluchowski equation -- Small Pe -- Large Pe -- 7.4 Constitutive modeling of suspension stress -- 7.5 Irreversible dynamics in shear flow -- 7.5.1 Shear-induced diffusion -- 7.5.2 Shear-induced migration -- Two-fluid analysis -- 7.6 Orientable particles -- 8 Beyond Stokes flow: Finite inertia -- 8.1 Limit of the Stokes approximation -- 8.1.1 Influence of inertia far from a body -- 8.1.2 Oseen solution for a translating sphere -- 8.2 Settling spheres at finite inertia -- 8.3 Migration under dilute conditions in pressure-driven flow -- 8.3.1 Observations -- 8.3.2 Analytical approaches -- 8.4 Particle motion in finite-Re simple-shear flow -- 8.5 Weak-inertia rheology -- Epilogue -- References -- Index.

Opens up the field by introducing theoretical, mathematical concepts in physical form through examples.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.