Amazon cover image
Image from Amazon.com

Direct Numerical Simulations of Gas–Liquid Multiphase Flows.

By: Contributor(s): Publisher: Cambridge : Cambridge University Press, 2011Copyright date: ©2011Description: 1 online resource (338 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781139156974
Subject(s): Genre/Form: Additional physical formats: Print version:: Direct Numerical Simulations of Gas–Liquid Multiphase FlowsDDC classification:
  • 530.427
LOC classification:
  • TA357.5.M84 T79 2011
Online resources:
Contents:
Cover -- DIRECT NUMERICAL SIMULATIONS OF GAS-LIQUID MULTIPHASE FLOWS -- Title -- Copyright -- Contents -- Preface -- 1 Introduction -- 1.1 Examples of multiphase flows -- 1.2 Computational modeling -- 1.2.1 Simple flows (Re = 0 and Re = ∞) -- 1.2.2 Finite Reynolds number flows -- 1.3 Looking ahead -- 2 Fluid mechanics with interfaces -- 2.1 General principles -- 2.2 Basic equations -- 2.2.1 Mass conservation -- 2.2.2 Momentum conservation -- 2.2.3 Energy conservation -- 2.2.4 Incompressible flow -- 2.2.5 Boundary conditions -- 2.3 Interfaces: description and definitions -- 2.4 Fluid mechanics with interfaces -- 2.4.1 Mass conservation and velocity conditions -- 2.4.2 Surface tension -- 2.4.3 Momentum conservation with interfaces -- 2.4.4 Free-surface flow -- 2.5 Fluid mechanics with interfaces: the one-fluid formulation -- 2.6 Nondimensional numbers -- 2.7 Thin films, intermolecular forces, and contact lines -- 2.7.1 Disjoining pressure and forces between interfaces -- 2.7.2 Contact line statics and dynamics -- 2.8 Notes -- 2.8.1 Fluid and interface mechanics -- 2.8.2 Thin films and contact lines -- 3 Numerical solutions of the Navier-Stokes equations -- 3.1 Time integration -- 3.2 Spatial discretization -- 3.3 Discretization of the advection terms -- 3.4 The viscous terms -- 3.5 The pressure equation -- 3.6 Velocity boundary conditions -- 3.7 Outflow boundary conditions -- 3.8 Adaptive mesh refinement -- 3.9 Summary -- 3.10 Postscript: conservative versus non-conservative form -- 4 Advecting a fluid interface -- 4.1 Notations -- 4.2 Advecting the color function -- 4.3 The volume-of-fluid (VOF) method -- 4.4 Front tracking -- 4.5 The level-set method -- 4.6 Phase-field methods -- 4.7 The CIP method -- 4.8 Summary -- 5 The volume-of-fluid method -- 5.1 Basic properties -- 5.2 Interface reconstruction.
5.2.1 Convergence order of a reconstruction method -- 5.2.2 Evaluation of the interface unit normal -- 5.2.3 Determination of α -- 5.3 Tests of reconstruction methods -- 5.3.1 Errors measurement and convergence rate -- 5.3.2 Reconstruction accuracy tests -- 5.4 Interface advection -- 5.4.1 Geometrical one-dimensional linear-mapping method -- 5.4.2 Related one-dimensional advection methods -- 5.4.3 Unsplit methods -- 5.5 Tests of reconstruction and advection methods -- 5.5.1 Translation test -- 5.5.2 Vortex-in-a-box test -- 5.6 Hybrid methods -- 6 Advecting marker points: front tracking -- 6.1 The structure of the front -- 6.1.1 Structured two-dimensional fronts -- 6.1.2 Unstructured fronts -- 6.2 Restructuring the fronts -- 6.3 The front-grid communications -- 6.3.1 Locating the front on the fixed grid -- 6.3.2 Interpolation and smoothing -- 6.4 Advection of the front -- 6.5 Constructing the marker function -- 6.5.1 Constructing the marker function from its gradient -- 6.5.2 Construction of the volume fraction from the front location -- 6.6 Changes in the front topology -- 6.7 Notes -- 7 Surface tension -- 7.1 Computing surface tension from marker functions -- 7.1.1 Continuous surface force method -- 7.1.2 Continuous surface stress method -- 7.1.3 Direct addition and elementary smoothing in the VOF method -- 7.1.4 Weighted distribution in the VOF method: kernel smoothing -- 7.1.5 Axisymmetric interfaces -- 7.2 Computing the surface tension of a tracked front -- 7.2.1 Two-dimensional interfaces -- 7.2.2 Three-dimensional interfaces -- 7.2.3 Smoothing the surface tension on the fixed grid -- 7.3 Testing the surface tension methods -- 7.3.1 Static case: spurious currents -- 7.3.2 Dynamic case -- 7.4 More sophisticated surface tension methods -- 7.4.1 Direct addition with pressure correction -- 7.4.2 CSF method with better curvature: PROST.
7.4.3 Numerical estimate of the curvature from the volume fractions: the HF method -- 7.5 Conclusion on numerical methods -- 8 Disperse bubbly flows -- 8.1 Introduction -- 8.2 Homogeneous bubbly flows -- 8.3 Bubbly flows in vertical channels -- 8.4 Discussion -- 9 Atomization and breakup -- 9.1 Introduction -- 9.2 Thread, sheet, and rim breakup -- 9.2.1 The Plateau-Rayleigh jet instability -- 9.2.2 Film and thread breakup -- 9.2.3 The Taylor-Culick rim -- 9.2.4 Rims leading to droplets and fingers -- 9.3 High-speed jets -- 9.3.1 Structure of the atomizing jet -- 9.3.2 Mechanisms of droplet formation -- 9.3.3 Stability theory -- 9.3.3.1 Elementary Kelvin-Helmholtz analysis -- 9.3.3.2 Orr-Sommerfeld analysis -- 9.4 Atomization simulations -- 9.4.1 Two-dimensional, temporal simulations -- 9.4.2 Two-dimensional spatially developing simulations -- 9.4.3 Three-dimensional calculations -- 10 Droplet collision, impact, and splashing -- 10.1 Introduction -- 10.2 Early simulations -- 10.3 Low-velocity impacts and collisions -- 10.4 More complex slow impacts -- 10.5 Corolla, crowns, and splashing impacts -- 10.5.1 Impacts on thin liquid layers -- 10.5.2 Three-dimensional impacts -- 11 Extensions -- 11.1 Additional fields and surface physics -- 11.1.1 Thermocapillary motion -- 11.1.2 Electrohydrodynamics -- 11.1.3 Mass transfer and chemical reactions -- 11.1.4 Boiling -- 11.1.5 Cavitation -- 11.2 Imbedded boundaries -- 11.2.1 The immersed boundary method of Peskin -- 11.2.2 Solid boundaries -- 11.2.3 Solidification -- 11.3 Multiscale issues -- 11.4 Summary -- Appendix A Interfaces: description and definitions -- A.1 Two-dimensional geometry -- A.2 Three-dimensional geometry -- A.3 Axisymmetric geometry -- A.4 Differentiation and integration on surfaces -- Appendix B Distributions concentrated on the interface -- B.1 A simple example.
Appendix C Cube-chopping algorithm -- C.1 Two-dimensional problem -- C.2 Three-dimensional problem -- Appendix D The dynamics of liquid sheets: linearized theory -- D.1 Flow configuration -- D.2 Inviscid results -- D.2.1 The general dispersion relation -- D.2.2 Capillary-gravity waves -- D.2.3 The Kelvin-Helmholtz instability -- D.2.4 Effect of thick boundary layers in the inviscid framework -- D.3 Viscous theory for the Kelvin-Helmholtz instability -- References -- Index.
Summary: A comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students in various fields.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan Available EBKAF00056824
Ebrary Ebrary Algeria Available
Ebrary Ebrary Cyprus Available
Ebrary Ebrary Egypt Available
Ebrary Ebrary Libya Available
Ebrary Ebrary Morocco Available
Ebrary Ebrary Nepal Available EBKNP00056824
Ebrary Ebrary Sudan Available
Ebrary Ebrary Tunisia Available
Total holds: 0

Cover -- DIRECT NUMERICAL SIMULATIONS OF GAS-LIQUID MULTIPHASE FLOWS -- Title -- Copyright -- Contents -- Preface -- 1 Introduction -- 1.1 Examples of multiphase flows -- 1.2 Computational modeling -- 1.2.1 Simple flows (Re = 0 and Re = ∞) -- 1.2.2 Finite Reynolds number flows -- 1.3 Looking ahead -- 2 Fluid mechanics with interfaces -- 2.1 General principles -- 2.2 Basic equations -- 2.2.1 Mass conservation -- 2.2.2 Momentum conservation -- 2.2.3 Energy conservation -- 2.2.4 Incompressible flow -- 2.2.5 Boundary conditions -- 2.3 Interfaces: description and definitions -- 2.4 Fluid mechanics with interfaces -- 2.4.1 Mass conservation and velocity conditions -- 2.4.2 Surface tension -- 2.4.3 Momentum conservation with interfaces -- 2.4.4 Free-surface flow -- 2.5 Fluid mechanics with interfaces: the one-fluid formulation -- 2.6 Nondimensional numbers -- 2.7 Thin films, intermolecular forces, and contact lines -- 2.7.1 Disjoining pressure and forces between interfaces -- 2.7.2 Contact line statics and dynamics -- 2.8 Notes -- 2.8.1 Fluid and interface mechanics -- 2.8.2 Thin films and contact lines -- 3 Numerical solutions of the Navier-Stokes equations -- 3.1 Time integration -- 3.2 Spatial discretization -- 3.3 Discretization of the advection terms -- 3.4 The viscous terms -- 3.5 The pressure equation -- 3.6 Velocity boundary conditions -- 3.7 Outflow boundary conditions -- 3.8 Adaptive mesh refinement -- 3.9 Summary -- 3.10 Postscript: conservative versus non-conservative form -- 4 Advecting a fluid interface -- 4.1 Notations -- 4.2 Advecting the color function -- 4.3 The volume-of-fluid (VOF) method -- 4.4 Front tracking -- 4.5 The level-set method -- 4.6 Phase-field methods -- 4.7 The CIP method -- 4.8 Summary -- 5 The volume-of-fluid method -- 5.1 Basic properties -- 5.2 Interface reconstruction.

5.2.1 Convergence order of a reconstruction method -- 5.2.2 Evaluation of the interface unit normal -- 5.2.3 Determination of α -- 5.3 Tests of reconstruction methods -- 5.3.1 Errors measurement and convergence rate -- 5.3.2 Reconstruction accuracy tests -- 5.4 Interface advection -- 5.4.1 Geometrical one-dimensional linear-mapping method -- 5.4.2 Related one-dimensional advection methods -- 5.4.3 Unsplit methods -- 5.5 Tests of reconstruction and advection methods -- 5.5.1 Translation test -- 5.5.2 Vortex-in-a-box test -- 5.6 Hybrid methods -- 6 Advecting marker points: front tracking -- 6.1 The structure of the front -- 6.1.1 Structured two-dimensional fronts -- 6.1.2 Unstructured fronts -- 6.2 Restructuring the fronts -- 6.3 The front-grid communications -- 6.3.1 Locating the front on the fixed grid -- 6.3.2 Interpolation and smoothing -- 6.4 Advection of the front -- 6.5 Constructing the marker function -- 6.5.1 Constructing the marker function from its gradient -- 6.5.2 Construction of the volume fraction from the front location -- 6.6 Changes in the front topology -- 6.7 Notes -- 7 Surface tension -- 7.1 Computing surface tension from marker functions -- 7.1.1 Continuous surface force method -- 7.1.2 Continuous surface stress method -- 7.1.3 Direct addition and elementary smoothing in the VOF method -- 7.1.4 Weighted distribution in the VOF method: kernel smoothing -- 7.1.5 Axisymmetric interfaces -- 7.2 Computing the surface tension of a tracked front -- 7.2.1 Two-dimensional interfaces -- 7.2.2 Three-dimensional interfaces -- 7.2.3 Smoothing the surface tension on the fixed grid -- 7.3 Testing the surface tension methods -- 7.3.1 Static case: spurious currents -- 7.3.2 Dynamic case -- 7.4 More sophisticated surface tension methods -- 7.4.1 Direct addition with pressure correction -- 7.4.2 CSF method with better curvature: PROST.

7.4.3 Numerical estimate of the curvature from the volume fractions: the HF method -- 7.5 Conclusion on numerical methods -- 8 Disperse bubbly flows -- 8.1 Introduction -- 8.2 Homogeneous bubbly flows -- 8.3 Bubbly flows in vertical channels -- 8.4 Discussion -- 9 Atomization and breakup -- 9.1 Introduction -- 9.2 Thread, sheet, and rim breakup -- 9.2.1 The Plateau-Rayleigh jet instability -- 9.2.2 Film and thread breakup -- 9.2.3 The Taylor-Culick rim -- 9.2.4 Rims leading to droplets and fingers -- 9.3 High-speed jets -- 9.3.1 Structure of the atomizing jet -- 9.3.2 Mechanisms of droplet formation -- 9.3.3 Stability theory -- 9.3.3.1 Elementary Kelvin-Helmholtz analysis -- 9.3.3.2 Orr-Sommerfeld analysis -- 9.4 Atomization simulations -- 9.4.1 Two-dimensional, temporal simulations -- 9.4.2 Two-dimensional spatially developing simulations -- 9.4.3 Three-dimensional calculations -- 10 Droplet collision, impact, and splashing -- 10.1 Introduction -- 10.2 Early simulations -- 10.3 Low-velocity impacts and collisions -- 10.4 More complex slow impacts -- 10.5 Corolla, crowns, and splashing impacts -- 10.5.1 Impacts on thin liquid layers -- 10.5.2 Three-dimensional impacts -- 11 Extensions -- 11.1 Additional fields and surface physics -- 11.1.1 Thermocapillary motion -- 11.1.2 Electrohydrodynamics -- 11.1.3 Mass transfer and chemical reactions -- 11.1.4 Boiling -- 11.1.5 Cavitation -- 11.2 Imbedded boundaries -- 11.2.1 The immersed boundary method of Peskin -- 11.2.2 Solid boundaries -- 11.2.3 Solidification -- 11.3 Multiscale issues -- 11.4 Summary -- Appendix A Interfaces: description and definitions -- A.1 Two-dimensional geometry -- A.2 Three-dimensional geometry -- A.3 Axisymmetric geometry -- A.4 Differentiation and integration on surfaces -- Appendix B Distributions concentrated on the interface -- B.1 A simple example.

Appendix C Cube-chopping algorithm -- C.1 Two-dimensional problem -- C.2 Three-dimensional problem -- Appendix D The dynamics of liquid sheets: linearized theory -- D.1 Flow configuration -- D.2 Inviscid results -- D.2.1 The general dispersion relation -- D.2.2 Capillary-gravity waves -- D.2.3 The Kelvin-Helmholtz instability -- D.2.4 Effect of thick boundary layers in the inviscid framework -- D.3 Viscous theory for the Kelvin-Helmholtz instability -- References -- Index.

A comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students in various fields.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.