Visualization of Fields and Applications in Engineering.

By: Tou, StephenPublisher: Hoboken : John Wiley & Sons, Incorporated, 2011Copyright date: ©2011Edition: 1st edDescription: 1 online resource (384 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9780470978269Subject(s): Engineering mathematics.;Fluid dynamics -- Mathematics.;Electromagnetic fields -- Mathematical models.;Gravitational waves -- Mathematical models.;Information visualizationGenre/Form: Electronic books. Additional physical formats: Print version:: Visualization of Fields and Applications in EngineeringDDC classification: 620.00151563 LOC classification: TA347.T4Online resources: Click to View
Contents:
Intro -- Visualization of Fields and Applications in Engineering -- Contents -- Preface -- 1 Introduction -- 1.1 A General View -- 1.2 Historical Development and Progress in Visual Science -- 1.3 Scientific Visualization Philosophy, Techniques and Challenges -- 2 Field Descriptions and Kinematics -- 2.1 Lagrangian/Eulerian Description and Transformation -- 2.2 Curvilinear Coordinates -- 2.2.1 Polar Coordinate -- 2.2.2 Streamline (Flux Line) Coordinates -- 2.2.3 Potential-Stream Function Coordinates -- 2.3 Field Kinematics and Visual Attributes -- 2.3.1 Field Line Trajectory -- 2.3.2 Field Line Integral Curves -- 2.3.3 Field Lines, Material Lines and Path Lines -- 2.3.4 Streamlines (Flux Lines) -- 3 Field Model, Representation and Visualization -- 3.1 Field Models and Concepts -- 3.2 Scalar Fields and Representation -- 3.3 Vector Fields and Representation -- 3.4 Vector Icons and Classifications -- 3.4.1 Classification Based on Domain Configurations -- 3.4.2 Classification Based on Information Levels -- 3.4.3 Classification Based on Topological Skeleton -- 3.5 Scalar Potential -- 3.6 Vector Potential -- 3.7 Vector Field Specification -- 3.7.1 Helmholtz's Theorem -- 3.8 Tensor Contraction and Transport Process Visualization -- 3.8.1 Mechanical Energy Function and Heatfunction -- 3.8.2 Strain Energy Trajectory and Strain Function -- 3.9 Multiple Fields -- 4 Complex Analysis and Complex Potentials -- 4.1 Complex Variables/Functions and Applications -- 4.2 Complex Analysis and Cauchy-Riemann Equation -- 4.3 Differentiation of Complex Function -- 4.4 Integration of Complex Functions -- 4.5 Visualization of Complex Potentials -- 4.5.1 Trajectory Method -- 4.5.2 Method of Curvilinear Squares -- 4.5.3 Transfer Characteristics and Field Property Evaluation -- 4.6 Example 4.1a Visualization of Heat and Fluid Transport in a Corner.
5 Field Mapping and Applications -- 5.1 Introduction -- 5.2 Mapping of Euclidean Geometry -- 5.2.1 Congruent Mapping -- 5.2.2 Similitude Mapping -- 5.2.3 Affine Mapping -- 5.3 Inversion Mapping -- 5.3.1 Circle Inversion -- 5.4 Mapping with Complex Functions -- 5.5 Conformal Mapping and Applications -- 5.6 Hodograph Method and Mapping -- 5.6.1 Conjugate Hodograph -- 5.6.2 Hodograph -- 5.7 Hodograph Representations and Applications -- 5.7.1 Straight Boundaries -- 5.7.2 Free Surface -- 5.7.3 Special Field Patterns -- 5.7.4 Projectile Trajectory in Constant Force Fields -- 5.7.5 Motion Trajectory in Central Force Fields -- 5.7.6 Trajectory of Charged Particles in Uniform Magnetic Fields -- 5.8 Example 4.1b Mapping of Field Patterns and Image Warping -- 6 Tensor Representation, Contraction and Visualization -- 6.1 Introduction -- 6.2 Development of Tensor Visualization Techniques -- 6.2.1 Mohr's Circle -- 6.2.2 Tensor Field Line Trajectories (Lines of Principal Stress) -- 6.2.3 Isochromatics -- 6.2.4 Isoclines -- 6.2.5 Stress Trajectories -- 6.2.6 Slip Lines -- 6.2.7 Isopachs -- 6.3 Tensor Description and Representation -- 6.3.1 Tensor Icons and Classification -- 6.4 Tensor Decomposition and Tensor Rank Reduction -- 6.4.1 Strain Tensor and Stress Tensor -- 6.4.2 Rotation Tensor -- 6.4.3 Rate of Strain Tensor and Viscous Stress Tensor -- 6.4.4 Vorticity Tensor -- 6.4.5 Tensor Contractions: Tensor Vector on a Reference Plane -- 6.4.6 Tensor Contractions: Tensor Vector at a Point -- 6.5 Visualization of Symmetric Tensors -- 6.5.1 Tensor Invariants -- 6.5.2 Tensor Transformation -- 6.5.3 Principal States and Eigenanalysis -- 6.5.4 Hybrid Method of Tensor Visualization -- 6.6 Visualization of Antisymmetric Tensors -- 6.6.1 Vorticity Concepts and Dynamics -- 6.6.2 Forced Vortex -- 6.6.3 Free Vortex -- 6.6.4 Vortices Transport and Vorticity Function.
6.7 Example: 4.1c Convective Momentum Flux Tensor Visualization -- 7 Critical Point Topology, Classification and Visualization -- 7.1 Introduction -- 7.2 Complex Analysis of Critical Point -- 7.3 Critical Point Theory and Classification -- 7.3.1 Symmetric Tensor: [∇V] = [∇V]T -- Im1 = Im2 = 0 -- 7.3.2 Antisymmetric Tensor: τii = 0, i = j -- τij = -τji, i ≠ j -- 7.3.3 Asymmetric Tensor -- 7.4 Example 4.1d Critical Point Topology -- 7.5 Singular Point Visualization and Mapping -- 7.6 Example 7.1 Mapping of a Point Source -- 8 Engineering Application Examples -- 8.1 Example 8.1: Torsion of a Square Beam -- 8.2 Example 8.2: Bending of a Cantilever Beam Subject to a Point Load -- 8.3 Example 8.3: Squeezing Flow and Vorticity Transport -- 8.4 Example 8.4: Groundwater Flows in an Anisotropic Porous Medium -- References -- Index.
Summary: Preface ix 1 Introduction 1 1.1 A General View 1 1.2 Historical Development and Progress in Visual Science 3 1.3 Scientific Visualization Philosophy, Techniques and Challenges 7 2 Field Descriptions and Kinematics 11 2.1 Lagrangian/Eulerian Description and Transformation 11 2.2 Curvilinear Coordinates 15 2.2.1 Polar Coordinate 24 2.2.2 Streamline (Flux Line) Coordinates 29 2.2.3 Potential-Stream Function Coordinates 43 2.3 Field Kinematics and Visual Attributes 49 2.3.1 Field Line Trajectory 49 2.3.2 Field Line Integral Curves 50 2.3.3 Field Lines, Material Lines and Path Lines 54 2.3.4 Streamlines (Flux Lines) 56 3 Field Model, Representation and Visualization 63 3.1 Field Models and Concepts 63 3.2 Scalar Fields and Representation 65 3.3 Vector Fields and Representation 68 3.4 Vector Icons and Classifications 69 3.4.1 Classification Based on Domain Configurations 70 3.4.2 Classification Based on Information Levels 70 3.4.3 Classification Based on Topological Skeleton 71 3.5 Scalar Potential 71 3.6 Vector Potential 74 3.7 Vector Field Specification 77 3.7.1 Helmholtz's Theorem 77 3.8 Tensor Contraction and Transport Process Visualization 79 3.8.1 Mechanical Energy Function and Heat function 80 3.8.2 Strain Energy Trajectory and Strain Function 84 3.9 Multiple Fields 85 4 Complex Analysis and Complex Potentials 97 4.1 Complex Variables/Functions and Applications 97 4.2 Complex Analysis and Cauchy-Riemann Equation 100 4.3 Differentiation of Complex Function 101 4.4 Integration of Complex Functions 104 4.5 Visualization of Complex Potentials 107 4.5.1 Trajectory Method 107 4.5.2 Method of Curvilinear Squares 108 4.5.3 Transfer Characteristics and Field Property Evaluation 111 4.6 Example 4.1a Visualization of Heat and Fluid Transport in a Corner 114 5 Field MappingSummary: and Applications 127 5.1 Introduction 127 5.2 Mapping of Euclidean Geometry 129 5.2.1 Congruent Mapping 129 5.2.2 Similitude Mapping 131 5.2.3 Affine Mapping 132 5.3 Inversion Mapping 133 5.3.1 Circle Inversion 134 5.4 Mapping with Complex Functions 135 5.5 Conformal Mapping and Applications 137 5.6 Hodograph Method and Mapping 147 5.6.1 Conjugate Hodograph 148 5.6.2 Hodograph 149 5.7 Hodograph Representations and Applications 149 5.7.1 Straight Boundaries 156 5.7.2 Free Surface 158 5.7.3 Special Field Patterns 160 5.7.4 Projectile Trajectory in Constant Force Fields 163 5.7.5 Motion Trajectory in Central Force Fields 169 5.7.6 Trajectory of Charged Particles in Uniform Magnetic Fields 179 5.8 Example 4.1b Mapping of Field Patterns and Image Warping 183 6 Tensor Representation, Contraction and Visualization 199 6.1 Introduction 199 6.2 Development of Tensor Visualization Techniques 200 6.2.1 Mohr's Circle 200 6.2.2 Tensor Field Line Trajectories (Lines of Principal Stress) 200 6.2.3 Isochromatics 201 6.2.4 Isoclines 201 6.2.5 Stress Trajectories 201 6.2.6 Slip Lines 201 6.2.7 Isopachs 201 6.3 Tensor Description and Representation 201 6.3.1 Tensor Icons and Classification 204 6.4 Tensor Decomposition and Tensor Rank Reduction 204 6.4.1 Strain Tensor and Stress Tensor 206 6.4.2 Rotation Tensor 207 6.4.3 Rate of Strain Tensor and Viscous Stress Tensor 208 6.4.4 Vorticity Tensor 210 6.4.5 Tensor Contractions: Tensor Vector on a Reference Plane 213 6.4.6 Tensor Contractions: Tensor Vector at a Point 214 6.5 Visualization of Symmetric Tensors 214 6.5.1 Tensor Invariants 214 6.5.2 Tensor Transformation 217 6.5.3 Principal States and Eigenanalysis 217 6.5.4 Hybrid Method of Tensor Visualization 227 6.6 Visualization of Antisymmetric Tensors 228 6.6.1 VorticitySummary: Concepts and Dynamics 228 6.6.2 Forced Vortex 232 6.6.3 Free Vortex 237 6.6.4 Vortices Transport and Vorticity Function 240 6.7 Example: 4.1c Convective Momentum Flux Tensor Visualization 242 7 Critical Point Topology, Classification and Visualization 249 7.1 Introduction 249 7.2 Complex Analysis of Critical Point 251 7.3 Critical Point Theory and Classification 257 7.3.1 Symmetric Tensor: [∇V] = [∇V]T ;Im1 = Im2 = 0 261 7.3.2 Antisymmetric Tensor: τii = 0, i = j;τij = −τji, i _= j 262 7.3.3 Asymmetric Tensor 262 7.4 Example 4.1d Critical Point Topology 263 7.5 Singular Point Visualization and Mapping 265 7.6 Example 7.1 Mapping of a Point Source 266 8 Engineering Application Examples 273 8.1 Example 8.1: Torsion of a Square Beam 273 8.2 Example 8.2: Bending of a Cantilever Beam Subject to a Point Load 302 8.3 Example 8.3: Squeezing Flow and Vorticity Transport 323 8.4 Example 8.4: Groundwater Flows in an Anisotropic Porous Medium 345 References 365 Index 369.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan
Available EBKAF00055859
Ebrary Ebrary Algeria
Available
Ebrary Ebrary Cyprus
Available
Ebrary Ebrary Egypt
Available
Ebrary Ebrary Libya
Available
Ebrary Ebrary Morocco
Available
Ebrary Ebrary Nepal
Available EBKNP00055859
Ebrary Ebrary Sudan

Access a wide range of magazines and books using Pressreader and Ebook central.

Enjoy your reading, British Council Sudan.

Available
Ebrary Ebrary Tunisia
Available
Total holds: 0

Intro -- Visualization of Fields and Applications in Engineering -- Contents -- Preface -- 1 Introduction -- 1.1 A General View -- 1.2 Historical Development and Progress in Visual Science -- 1.3 Scientific Visualization Philosophy, Techniques and Challenges -- 2 Field Descriptions and Kinematics -- 2.1 Lagrangian/Eulerian Description and Transformation -- 2.2 Curvilinear Coordinates -- 2.2.1 Polar Coordinate -- 2.2.2 Streamline (Flux Line) Coordinates -- 2.2.3 Potential-Stream Function Coordinates -- 2.3 Field Kinematics and Visual Attributes -- 2.3.1 Field Line Trajectory -- 2.3.2 Field Line Integral Curves -- 2.3.3 Field Lines, Material Lines and Path Lines -- 2.3.4 Streamlines (Flux Lines) -- 3 Field Model, Representation and Visualization -- 3.1 Field Models and Concepts -- 3.2 Scalar Fields and Representation -- 3.3 Vector Fields and Representation -- 3.4 Vector Icons and Classifications -- 3.4.1 Classification Based on Domain Configurations -- 3.4.2 Classification Based on Information Levels -- 3.4.3 Classification Based on Topological Skeleton -- 3.5 Scalar Potential -- 3.6 Vector Potential -- 3.7 Vector Field Specification -- 3.7.1 Helmholtz's Theorem -- 3.8 Tensor Contraction and Transport Process Visualization -- 3.8.1 Mechanical Energy Function and Heatfunction -- 3.8.2 Strain Energy Trajectory and Strain Function -- 3.9 Multiple Fields -- 4 Complex Analysis and Complex Potentials -- 4.1 Complex Variables/Functions and Applications -- 4.2 Complex Analysis and Cauchy-Riemann Equation -- 4.3 Differentiation of Complex Function -- 4.4 Integration of Complex Functions -- 4.5 Visualization of Complex Potentials -- 4.5.1 Trajectory Method -- 4.5.2 Method of Curvilinear Squares -- 4.5.3 Transfer Characteristics and Field Property Evaluation -- 4.6 Example 4.1a Visualization of Heat and Fluid Transport in a Corner.

5 Field Mapping and Applications -- 5.1 Introduction -- 5.2 Mapping of Euclidean Geometry -- 5.2.1 Congruent Mapping -- 5.2.2 Similitude Mapping -- 5.2.3 Affine Mapping -- 5.3 Inversion Mapping -- 5.3.1 Circle Inversion -- 5.4 Mapping with Complex Functions -- 5.5 Conformal Mapping and Applications -- 5.6 Hodograph Method and Mapping -- 5.6.1 Conjugate Hodograph -- 5.6.2 Hodograph -- 5.7 Hodograph Representations and Applications -- 5.7.1 Straight Boundaries -- 5.7.2 Free Surface -- 5.7.3 Special Field Patterns -- 5.7.4 Projectile Trajectory in Constant Force Fields -- 5.7.5 Motion Trajectory in Central Force Fields -- 5.7.6 Trajectory of Charged Particles in Uniform Magnetic Fields -- 5.8 Example 4.1b Mapping of Field Patterns and Image Warping -- 6 Tensor Representation, Contraction and Visualization -- 6.1 Introduction -- 6.2 Development of Tensor Visualization Techniques -- 6.2.1 Mohr's Circle -- 6.2.2 Tensor Field Line Trajectories (Lines of Principal Stress) -- 6.2.3 Isochromatics -- 6.2.4 Isoclines -- 6.2.5 Stress Trajectories -- 6.2.6 Slip Lines -- 6.2.7 Isopachs -- 6.3 Tensor Description and Representation -- 6.3.1 Tensor Icons and Classification -- 6.4 Tensor Decomposition and Tensor Rank Reduction -- 6.4.1 Strain Tensor and Stress Tensor -- 6.4.2 Rotation Tensor -- 6.4.3 Rate of Strain Tensor and Viscous Stress Tensor -- 6.4.4 Vorticity Tensor -- 6.4.5 Tensor Contractions: Tensor Vector on a Reference Plane -- 6.4.6 Tensor Contractions: Tensor Vector at a Point -- 6.5 Visualization of Symmetric Tensors -- 6.5.1 Tensor Invariants -- 6.5.2 Tensor Transformation -- 6.5.3 Principal States and Eigenanalysis -- 6.5.4 Hybrid Method of Tensor Visualization -- 6.6 Visualization of Antisymmetric Tensors -- 6.6.1 Vorticity Concepts and Dynamics -- 6.6.2 Forced Vortex -- 6.6.3 Free Vortex -- 6.6.4 Vortices Transport and Vorticity Function.

6.7 Example: 4.1c Convective Momentum Flux Tensor Visualization -- 7 Critical Point Topology, Classification and Visualization -- 7.1 Introduction -- 7.2 Complex Analysis of Critical Point -- 7.3 Critical Point Theory and Classification -- 7.3.1 Symmetric Tensor: [∇V] = [∇V]T -- Im1 = Im2 = 0 -- 7.3.2 Antisymmetric Tensor: τii = 0, i = j -- τij = -τji, i ≠ j -- 7.3.3 Asymmetric Tensor -- 7.4 Example 4.1d Critical Point Topology -- 7.5 Singular Point Visualization and Mapping -- 7.6 Example 7.1 Mapping of a Point Source -- 8 Engineering Application Examples -- 8.1 Example 8.1: Torsion of a Square Beam -- 8.2 Example 8.2: Bending of a Cantilever Beam Subject to a Point Load -- 8.3 Example 8.3: Squeezing Flow and Vorticity Transport -- 8.4 Example 8.4: Groundwater Flows in an Anisotropic Porous Medium -- References -- Index.

Preface ix 1 Introduction 1 1.1 A General View 1 1.2 Historical Development and Progress in Visual Science 3 1.3 Scientific Visualization Philosophy, Techniques and Challenges 7 2 Field Descriptions and Kinematics 11 2.1 Lagrangian/Eulerian Description and Transformation 11 2.2 Curvilinear Coordinates 15 2.2.1 Polar Coordinate 24 2.2.2 Streamline (Flux Line) Coordinates 29 2.2.3 Potential-Stream Function Coordinates 43 2.3 Field Kinematics and Visual Attributes 49 2.3.1 Field Line Trajectory 49 2.3.2 Field Line Integral Curves 50 2.3.3 Field Lines, Material Lines and Path Lines 54 2.3.4 Streamlines (Flux Lines) 56 3 Field Model, Representation and Visualization 63 3.1 Field Models and Concepts 63 3.2 Scalar Fields and Representation 65 3.3 Vector Fields and Representation 68 3.4 Vector Icons and Classifications 69 3.4.1 Classification Based on Domain Configurations 70 3.4.2 Classification Based on Information Levels 70 3.4.3 Classification Based on Topological Skeleton 71 3.5 Scalar Potential 71 3.6 Vector Potential 74 3.7 Vector Field Specification 77 3.7.1 Helmholtz's Theorem 77 3.8 Tensor Contraction and Transport Process Visualization 79 3.8.1 Mechanical Energy Function and Heat function 80 3.8.2 Strain Energy Trajectory and Strain Function 84 3.9 Multiple Fields 85 4 Complex Analysis and Complex Potentials 97 4.1 Complex Variables/Functions and Applications 97 4.2 Complex Analysis and Cauchy-Riemann Equation 100 4.3 Differentiation of Complex Function 101 4.4 Integration of Complex Functions 104 4.5 Visualization of Complex Potentials 107 4.5.1 Trajectory Method 107 4.5.2 Method of Curvilinear Squares 108 4.5.3 Transfer Characteristics and Field Property Evaluation 111 4.6 Example 4.1a Visualization of Heat and Fluid Transport in a Corner 114 5 Field Mapping

and Applications 127 5.1 Introduction 127 5.2 Mapping of Euclidean Geometry 129 5.2.1 Congruent Mapping 129 5.2.2 Similitude Mapping 131 5.2.3 Affine Mapping 132 5.3 Inversion Mapping 133 5.3.1 Circle Inversion 134 5.4 Mapping with Complex Functions 135 5.5 Conformal Mapping and Applications 137 5.6 Hodograph Method and Mapping 147 5.6.1 Conjugate Hodograph 148 5.6.2 Hodograph 149 5.7 Hodograph Representations and Applications 149 5.7.1 Straight Boundaries 156 5.7.2 Free Surface 158 5.7.3 Special Field Patterns 160 5.7.4 Projectile Trajectory in Constant Force Fields 163 5.7.5 Motion Trajectory in Central Force Fields 169 5.7.6 Trajectory of Charged Particles in Uniform Magnetic Fields 179 5.8 Example 4.1b Mapping of Field Patterns and Image Warping 183 6 Tensor Representation, Contraction and Visualization 199 6.1 Introduction 199 6.2 Development of Tensor Visualization Techniques 200 6.2.1 Mohr's Circle 200 6.2.2 Tensor Field Line Trajectories (Lines of Principal Stress) 200 6.2.3 Isochromatics 201 6.2.4 Isoclines 201 6.2.5 Stress Trajectories 201 6.2.6 Slip Lines 201 6.2.7 Isopachs 201 6.3 Tensor Description and Representation 201 6.3.1 Tensor Icons and Classification 204 6.4 Tensor Decomposition and Tensor Rank Reduction 204 6.4.1 Strain Tensor and Stress Tensor 206 6.4.2 Rotation Tensor 207 6.4.3 Rate of Strain Tensor and Viscous Stress Tensor 208 6.4.4 Vorticity Tensor 210 6.4.5 Tensor Contractions: Tensor Vector on a Reference Plane 213 6.4.6 Tensor Contractions: Tensor Vector at a Point 214 6.5 Visualization of Symmetric Tensors 214 6.5.1 Tensor Invariants 214 6.5.2 Tensor Transformation 217 6.5.3 Principal States and Eigenanalysis 217 6.5.4 Hybrid Method of Tensor Visualization 227 6.6 Visualization of Antisymmetric Tensors 228 6.6.1 Vorticity

Concepts and Dynamics 228 6.6.2 Forced Vortex 232 6.6.3 Free Vortex 237 6.6.4 Vortices Transport and Vorticity Function 240 6.7 Example: 4.1c Convective Momentum Flux Tensor Visualization 242 7 Critical Point Topology, Classification and Visualization 249 7.1 Introduction 249 7.2 Complex Analysis of Critical Point 251 7.3 Critical Point Theory and Classification 257 7.3.1 Symmetric Tensor: [∇V] = [∇V]T ;Im1 = Im2 = 0 261 7.3.2 Antisymmetric Tensor: τii = 0, i = j;τij = −τji, i _= j 262 7.3.3 Asymmetric Tensor 262 7.4 Example 4.1d Critical Point Topology 263 7.5 Singular Point Visualization and Mapping 265 7.6 Example 7.1 Mapping of a Point Source 266 8 Engineering Application Examples 273 8.1 Example 8.1: Torsion of a Square Beam 273 8.2 Example 8.2: Bending of a Cantilever Beam Subject to a Point Load 302 8.3 Example 8.3: Squeezing Flow and Vorticity Transport 323 8.4 Example 8.4: Groundwater Flows in an Anisotropic Porous Medium 345 References 365 Index 369.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.