Amazon cover image
Image from Amazon.com

Quantum Phase Transitions.

By: Publisher: Cambridge : Cambridge University Press, 2011Copyright date: ©2011Edition: 2nd edDescription: 1 online resource (521 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781139079464
Subject(s): Genre/Form: Additional physical formats: Print version:: Quantum Phase TransitionsDDC classification:
  • 530.424
LOC classification:
  • QC175.16.P5 S23 2011
Online resources:
Contents:
Cover -- Half-title -- Title -- Copyright -- Dedication -- Contents -- From the Preface to the first edition -- Acknowledgments -- Preface to the second edition -- Acknowledgments -- Part I: Introduction -- 1 Basic concepts -- 1.1 What is a quantum phase transition? -- 1.2 Nonzero temperature transitions and crossovers -- 1.3 Experimental examples -- 1.4 Theoretical models -- 1.4.1 Quantum Ising model -- 1.4.2 Quantum rotor model -- 1.4.3 Physical realizations of quantum rotors -- 2 Overview -- 2.1 Quantum field theories -- 2.2 What's different about quantum transitions? -- Part II: A first course -- 3 Classical phase transitions -- 3.1 Mean-field theory -- 3.2 Landau theory -- 3.3 Fluctuations and perturbation theory -- 3.3.1 Gaussian integrals -- 3.3.2 Expansion for susceptibility -- Exercises -- 4 The renormalization group -- 4.1 Gaussian theory -- 4.2 Momentum shell RG -- 4.3 Field renormalization -- 4.4 Correlation functions -- Exercises -- 5 The quantum Ising model -- 5.1 Effective Hamiltonian method -- 5.2 Large-g expansion -- 5.2.1 One-particle states -- 5.2.2 Two-particle states -- 5.3 Small-g expansion -- 5.3.1 d=2 -- 5.3.2 d=1 -- 5.4 Review -- 5.5 The classical Ising chain -- 5.5.1 The scaling limit -- 5.5.2 Universality -- 5.5.3 Mapping to a quantum model: Ising spin in a transverse field -- 5.6 Mapping of the quantum Ising chain to a classical Ising model -- Exercises -- 6 The quantum rotor model -- 6.1 Large-g expansion -- 6.2 Small-g expansion -- 6.3 The classical XY chain and an O(2) quantum rotor -- 6.4 The classical Heisenberg chain and an O(3) quantum rotor -- 6.5 Mapping to classical field theories -- 6.6 Spectrum of quantum field theory -- 6.6.1 Paramagnet -- 6.6.2 Quantum critical point -- 6.6.3 Magnetic order -- Exercises -- 7 Correlations, susceptibilities, and the quantum critical point -- 7.1 Spectral representation.
7.1.1 Structure factor -- 7.1.2 Linear response -- 7.2 Correlations across the quantum critical point -- 7.2.1 Paramagnet -- 7.2.2 Quantum critical point -- 7.2.3 Magnetic order -- Exercises -- 8 Broken symmetries -- 8.1 Discrete symmetry and surface tension -- 8.2 Continuous symmetry and the helicity modulus -- 8.2.1 Order parameter correlations -- 8.3 The London equation and the superfluid density -- 8.3.1 The rotor model -- Exercises -- 9 Boson Hubbard model -- 9.1 Mean-field theory -- 9.2 Coherent state path integral -- 9.2.1 Boson coherent states -- 9.3 Continuum quantum field theories -- Exercises -- Part III: Nonzero temperatures -- 10 The Ising chain in a transverse field -- 10.1 Exact spectrum -- 10.2 Continuum theory and scaling transformations -- 10.3 Equal-time correlations of the order parameter -- 10.4 Finite temperature crossovers -- 10.4.1 Low T on the magnetically ordered side,… -- 10.4.2 Low T on the quantum paramagnetic side,… -- 10.4.3 Continuum high T, T >> |Delta| -- 10.4.4 Summary -- 11 Quantum rotor models: large-N limit -- 11.1 Continuum theory and large-N limit -- 11.2 Zero temperature -- 11.2.1 Quantum paramagnet, g>gc -- 11.2.2 Critical point, g=gc -- 11.2.3 Magnetically ordered ground state, g gc , T > Delta+, Delta- -- 11.3.3 Low T on the magnetically ordered side, g < gc, T << Delta- -- 11.4 Numerical studies -- 12 The d = 1, O(N geq 3) rotor models -- 12.1 Scaling analysis at zero temperature -- 12.2 Low-temperature limit of the continuum theory, T << Delta+ -- 12.3 High-temperature limit of the continuum theory, Delta+ << T << J -- 12.3.1 Field-theoretic renormalization group -- 12.3.2 Computation of chi u -- 12.3.3 Dynamics -- 12.4 Summary -- 13 The d = 2, O(N geq 3) rotor models.
13.1 Low T on the magnetically ordered side, T 3 -- 14.3 Order parameter dynamics in d = 2 -- 14.4 Applications and extensions -- 15 Transport in d = 2 -- 15.1 Perturbation theory -- 15.1.1 sigma I -- 15.1.2 sigma II -- 15.2 Collisionless transport equations -- 15.3 Collision-dominated transport -- 15.3.1 epsilon expansion -- 15.3.2 Large-N limit -- 15.4 Physical interpretation -- 15.5 The AdS/CFT correspondence -- 15.5.1 Exact results for quantum critical transport -- 15.5.2 Implications -- 15.6 Applications and extensions -- Part IV: Other models -- 16 Dilute Fermi and Bose gases -- 16.1 The quantum XX model -- 16.2 The dilute spinless Fermi gas -- 16.2.1 Dilute classical gas, kB T 0 -- 16.2.3 High-T limit, kB T >> |mu| -- 16.3 The dilute Bose gas -- 16.3.1 d < 2 -- 16.3.2 d = 3 -- 16.3.3 Correlators of ZB in d = 1 -- Dilute classical gas,… -- Tomonaga-Luttinger liquid,… -- High-T limit,… -- Summary -- 16.4 The dilute spinful Fermi gas: the Feshbach resonance -- 16.4.1 The Fermi-Bose model -- 16.4.2 Large-N expansion -- 16.5 Applications and extensions -- 17 Phase transitions of Dirac fermions -- 17.1 d-wave superconductivity and Dirac fermions -- 17.2 Time-reversal symmetry breaking -- 17.3 Field theory and RG analysis -- 17.4 Ising-nematic ordering.
18 Fermi liquids, and their phase transitions -- 18.1 Fermi liquid theory -- 18.1.1 Independence of choice of vec K0 -- 18.2 Ising-nematic ordering -- 18.2.1 Hertz theory -- 18.2.2 Fate of the fermions -- 18.2.3 Non-Fermi liquid criticality in d = 2 -- Scaling theory -- 18.3 Spin density wave order -- 18.3.1 Mean-field theory -- 18.3.2 Continuum theory -- 18.3.3 Hertz theory -- 18.3.4 Fate of the fermions -- 18.3.5 Critical theory in d = 2 -- 18.4 Nonzero temperature crossovers -- 18.5 Applications and extensions -- 19 Heisenberg spins: ferromagnets and antiferromagnets -- 19.1 Coherent state path integral -- 19.2 Quantized ferromagnets -- 19.3 Antiferromagnets -- 19.3.1 Collinear antiferromagnetism and the quantum nonlinear sigma model -- 19.3.2 Collinear antiferromagnetism in d = 1 -- 19.3.3 Collinear antiferromagnetism in d = 2 -- Antiferromagnets without Berry phases -- Berry phases and valence bond solid order -- 19.3.4 Noncollinear antiferromagnetism in d = 2: deconfined spinons and visons -- 19.3.5 Deconfined criticality -- 19.4 Partial polarization and canted states -- 19.4.1 Quantum paramagnet -- 19.4.2 Quantized ferromagnets -- 19.4.3 Canted and Néel states -- 19.4.4 Zero temperature critical properties -- 19.5 Applications and extensions -- 20 Spin chains: bosonization -- 20.1 The XX chain revisited: bosonization -- 20.2 Phases of H12 -- 20.2.1 Sine-Gordon model -- 20.2.2 Tomonaga-Luttinger liquid -- 20.2.3 Valence bond solid order -- 20.2.4 Néel order -- 20.2.5 Models with SU(2) (Heisenberg) symmetry -- 20.2.6 Critical properties near phase boundaries -- 20.3 O(2) rotor model in d = 1 -- 20.4 Applications and extensions -- 21 Magnetic ordering transitions of disordered systems -- 21.1 Stability of quantum critical points in disordered systems -- 21.2 Griffiths-McCoy singularities -- 21.3 Perturbative field-theoretic analysis.
21.4 Metallic systems -- 21.5 Quantum Ising models near the percolation transition -- 21.5.1 Percolation theory -- 21.5.2 Classical dilute Ising models -- 21.5.3 Quantum dilute Ising models -- 21.6 The disordered quantum Ising chain -- 21.7 Discussion -- 21.8 Applications and extensions -- 22 Quantum spin glasses -- 22.1 The effective action -- 22.1.1 Metallic systems -- 22.2 Mean-field theory -- 22.3 Applications and extensions -- References -- Index.
Summary: Updated second edition with several new chapters, for graduates and researchers in condensed matter physics and particle and string theory.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan Available EBKAF00050755
Ebrary Ebrary Algeria Available
Ebrary Ebrary Cyprus Available
Ebrary Ebrary Egypt Available
Ebrary Ebrary Libya Available
Ebrary Ebrary Morocco Available
Ebrary Ebrary Nepal Available EBKNP00050755
Ebrary Ebrary Sudan Available
Ebrary Ebrary Tunisia Available
Total holds: 0

Cover -- Half-title -- Title -- Copyright -- Dedication -- Contents -- From the Preface to the first edition -- Acknowledgments -- Preface to the second edition -- Acknowledgments -- Part I: Introduction -- 1 Basic concepts -- 1.1 What is a quantum phase transition? -- 1.2 Nonzero temperature transitions and crossovers -- 1.3 Experimental examples -- 1.4 Theoretical models -- 1.4.1 Quantum Ising model -- 1.4.2 Quantum rotor model -- 1.4.3 Physical realizations of quantum rotors -- 2 Overview -- 2.1 Quantum field theories -- 2.2 What's different about quantum transitions? -- Part II: A first course -- 3 Classical phase transitions -- 3.1 Mean-field theory -- 3.2 Landau theory -- 3.3 Fluctuations and perturbation theory -- 3.3.1 Gaussian integrals -- 3.3.2 Expansion for susceptibility -- Exercises -- 4 The renormalization group -- 4.1 Gaussian theory -- 4.2 Momentum shell RG -- 4.3 Field renormalization -- 4.4 Correlation functions -- Exercises -- 5 The quantum Ising model -- 5.1 Effective Hamiltonian method -- 5.2 Large-g expansion -- 5.2.1 One-particle states -- 5.2.2 Two-particle states -- 5.3 Small-g expansion -- 5.3.1 d=2 -- 5.3.2 d=1 -- 5.4 Review -- 5.5 The classical Ising chain -- 5.5.1 The scaling limit -- 5.5.2 Universality -- 5.5.3 Mapping to a quantum model: Ising spin in a transverse field -- 5.6 Mapping of the quantum Ising chain to a classical Ising model -- Exercises -- 6 The quantum rotor model -- 6.1 Large-g expansion -- 6.2 Small-g expansion -- 6.3 The classical XY chain and an O(2) quantum rotor -- 6.4 The classical Heisenberg chain and an O(3) quantum rotor -- 6.5 Mapping to classical field theories -- 6.6 Spectrum of quantum field theory -- 6.6.1 Paramagnet -- 6.6.2 Quantum critical point -- 6.6.3 Magnetic order -- Exercises -- 7 Correlations, susceptibilities, and the quantum critical point -- 7.1 Spectral representation.

7.1.1 Structure factor -- 7.1.2 Linear response -- 7.2 Correlations across the quantum critical point -- 7.2.1 Paramagnet -- 7.2.2 Quantum critical point -- 7.2.3 Magnetic order -- Exercises -- 8 Broken symmetries -- 8.1 Discrete symmetry and surface tension -- 8.2 Continuous symmetry and the helicity modulus -- 8.2.1 Order parameter correlations -- 8.3 The London equation and the superfluid density -- 8.3.1 The rotor model -- Exercises -- 9 Boson Hubbard model -- 9.1 Mean-field theory -- 9.2 Coherent state path integral -- 9.2.1 Boson coherent states -- 9.3 Continuum quantum field theories -- Exercises -- Part III: Nonzero temperatures -- 10 The Ising chain in a transverse field -- 10.1 Exact spectrum -- 10.2 Continuum theory and scaling transformations -- 10.3 Equal-time correlations of the order parameter -- 10.4 Finite temperature crossovers -- 10.4.1 Low T on the magnetically ordered side,… -- 10.4.2 Low T on the quantum paramagnetic side,… -- 10.4.3 Continuum high T, T >> |Delta| -- 10.4.4 Summary -- 11 Quantum rotor models: large-N limit -- 11.1 Continuum theory and large-N limit -- 11.2 Zero temperature -- 11.2.1 Quantum paramagnet, g>gc -- 11.2.2 Critical point, g=gc -- 11.2.3 Magnetically ordered ground state, g gc , T > Delta+, Delta- -- 11.3.3 Low T on the magnetically ordered side, g < gc, T << Delta- -- 11.4 Numerical studies -- 12 The d = 1, O(N geq 3) rotor models -- 12.1 Scaling analysis at zero temperature -- 12.2 Low-temperature limit of the continuum theory, T << Delta+ -- 12.3 High-temperature limit of the continuum theory, Delta+ << T << J -- 12.3.1 Field-theoretic renormalization group -- 12.3.2 Computation of chi u -- 12.3.3 Dynamics -- 12.4 Summary -- 13 The d = 2, O(N geq 3) rotor models.

13.1 Low T on the magnetically ordered side, T 3 -- 14.3 Order parameter dynamics in d = 2 -- 14.4 Applications and extensions -- 15 Transport in d = 2 -- 15.1 Perturbation theory -- 15.1.1 sigma I -- 15.1.2 sigma II -- 15.2 Collisionless transport equations -- 15.3 Collision-dominated transport -- 15.3.1 epsilon expansion -- 15.3.2 Large-N limit -- 15.4 Physical interpretation -- 15.5 The AdS/CFT correspondence -- 15.5.1 Exact results for quantum critical transport -- 15.5.2 Implications -- 15.6 Applications and extensions -- Part IV: Other models -- 16 Dilute Fermi and Bose gases -- 16.1 The quantum XX model -- 16.2 The dilute spinless Fermi gas -- 16.2.1 Dilute classical gas, kB T 0 -- 16.2.3 High-T limit, kB T >> |mu| -- 16.3 The dilute Bose gas -- 16.3.1 d < 2 -- 16.3.2 d = 3 -- 16.3.3 Correlators of ZB in d = 1 -- Dilute classical gas,… -- Tomonaga-Luttinger liquid,… -- High-T limit,… -- Summary -- 16.4 The dilute spinful Fermi gas: the Feshbach resonance -- 16.4.1 The Fermi-Bose model -- 16.4.2 Large-N expansion -- 16.5 Applications and extensions -- 17 Phase transitions of Dirac fermions -- 17.1 d-wave superconductivity and Dirac fermions -- 17.2 Time-reversal symmetry breaking -- 17.3 Field theory and RG analysis -- 17.4 Ising-nematic ordering.

18 Fermi liquids, and their phase transitions -- 18.1 Fermi liquid theory -- 18.1.1 Independence of choice of vec K0 -- 18.2 Ising-nematic ordering -- 18.2.1 Hertz theory -- 18.2.2 Fate of the fermions -- 18.2.3 Non-Fermi liquid criticality in d = 2 -- Scaling theory -- 18.3 Spin density wave order -- 18.3.1 Mean-field theory -- 18.3.2 Continuum theory -- 18.3.3 Hertz theory -- 18.3.4 Fate of the fermions -- 18.3.5 Critical theory in d = 2 -- 18.4 Nonzero temperature crossovers -- 18.5 Applications and extensions -- 19 Heisenberg spins: ferromagnets and antiferromagnets -- 19.1 Coherent state path integral -- 19.2 Quantized ferromagnets -- 19.3 Antiferromagnets -- 19.3.1 Collinear antiferromagnetism and the quantum nonlinear sigma model -- 19.3.2 Collinear antiferromagnetism in d = 1 -- 19.3.3 Collinear antiferromagnetism in d = 2 -- Antiferromagnets without Berry phases -- Berry phases and valence bond solid order -- 19.3.4 Noncollinear antiferromagnetism in d = 2: deconfined spinons and visons -- 19.3.5 Deconfined criticality -- 19.4 Partial polarization and canted states -- 19.4.1 Quantum paramagnet -- 19.4.2 Quantized ferromagnets -- 19.4.3 Canted and Néel states -- 19.4.4 Zero temperature critical properties -- 19.5 Applications and extensions -- 20 Spin chains: bosonization -- 20.1 The XX chain revisited: bosonization -- 20.2 Phases of H12 -- 20.2.1 Sine-Gordon model -- 20.2.2 Tomonaga-Luttinger liquid -- 20.2.3 Valence bond solid order -- 20.2.4 Néel order -- 20.2.5 Models with SU(2) (Heisenberg) symmetry -- 20.2.6 Critical properties near phase boundaries -- 20.3 O(2) rotor model in d = 1 -- 20.4 Applications and extensions -- 21 Magnetic ordering transitions of disordered systems -- 21.1 Stability of quantum critical points in disordered systems -- 21.2 Griffiths-McCoy singularities -- 21.3 Perturbative field-theoretic analysis.

21.4 Metallic systems -- 21.5 Quantum Ising models near the percolation transition -- 21.5.1 Percolation theory -- 21.5.2 Classical dilute Ising models -- 21.5.3 Quantum dilute Ising models -- 21.6 The disordered quantum Ising chain -- 21.7 Discussion -- 21.8 Applications and extensions -- 22 Quantum spin glasses -- 22.1 The effective action -- 22.1.1 Metallic systems -- 22.2 Mean-field theory -- 22.3 Applications and extensions -- References -- Index.

Updated second edition with several new chapters, for graduates and researchers in condensed matter physics and particle and string theory.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.