Quantum Optics : An Introduction.

By: Fox, MarkSeries: Oxford Master Series in Physics SerPublisher: Oxford : Oxford University Press, Incorporated, 2006Copyright date: ©2006Description: 1 online resource (397 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9780191524257Subject(s): Quantum opticsGenre/Form: Electronic books. Additional physical formats: Print version:: Quantum Optics : An IntroductionDDC classification: 535/.15 LOC classification: QC446.2.F69 2006Online resources: Click to View
Contents:
Intro -- Contents -- List of symbols -- List of abbreviations -- I: Introduction and background -- 1 Introduction -- 1.1 What is quantum optics? -- 1.2 A brief history of quantum optics -- 1.3 How to use this book -- 2 Classical optics -- 2.1 Maxwell's equations and electromagnetic waves -- 2.2 Diffraction and interference -- 2.3 Coherence -- 2.4 Nonlinear optics -- 3 Quantum mechanics -- 3.1 Formalism of quantum mechanics -- 3.2 Quantized states in atoms -- 3.3 The harmonic oscillator -- 3.4 The Stern-Gerlach experiment -- 3.5 The band theory of solids -- 4 Radiative transitions in atoms -- 4.1 Einstein coefficients -- 4.2 Radiative transition rates -- 4.3 Selection rules -- 4.4 The width and shape of spectral lines -- 4.5 Line broadening in solids -- 4.6 Optical properties of semiconductors -- 4.7 Lasers -- II: Photons -- 5 Photon statistics -- 5.1 Introduction -- 5.2 Photon-counting statistics -- 5.3 Coherent light: Poissonian photon statistics -- 5.4 Classification of light by photon statistics -- 5.5 Super-Poissonian light -- 5.6 Sub-Poissonian light -- 5.7 Degradation of photon statistics by losses -- 5.8 Theory of photodetection -- 5.9 Shot noise in photodiodes -- 5.10 Observation of sub-Poissonian photon statistics -- 6 Photon antibunching -- 6.1 Introduction: the intensity interferometer -- 6.2 Hanbury Brown-Twiss experiments and classical intensity fluctuations -- 6.3 The second-order correlation function g[sup(2)](τ) -- 6.4 Hanbury Brown-Twiss experiments with photons -- 6.5 Photon bunching and antibunching -- 6.6 Experimental demonstrations of photon antibunching -- 6.7 Single-photon sources -- 7 Coherent states and squeezed light -- 7.1 Light waves as classical harmonic oscillators -- 7.2 Phasor diagrams and field quadratures -- 7.3 Light as a quantum harmonic oscillator -- 7.4 The vacuum field -- 7.5 Coherent states.
7.6 Shot noise and number-phase uncertainty -- 7.7 Squeezed states -- 7.8 Detection of squeezed light -- 7.9 Generation of squeezed states -- 7.10 Quantum noise in amplifiers -- 8 Photon number states -- 8.1 Operator solution of the harmonic oscillator -- 8.2 The number state representation -- 8.3 Photon number states -- 8.4 Coherent states -- 8.5 Quantum theory of Hanbury Brown-Twiss experiments -- III: Atom-photon interactions -- 9 Resonant light-atom interactions -- 9.1 Introduction -- 9.2 Preliminary concepts -- 9.3 The time-dependent Schrödinger equation -- 9.4 The weak-field limit: Einstein's B coefficient -- 9.5 The strong-field limit: Rabi oscillations -- 9.6 The Bloch sphere -- 10 Atoms in cavities -- 10.1 Optical cavities -- 10.2 Atom-cavity coupling -- 10.3 Weak coupling -- 10.4 Strong coupling -- 10.5 Applications of cavity effects -- 11 Cold atoms -- 11.1 Introduction -- 11.2 Laser cooling -- 11.3 Bose-Einstein condensation -- 11.4 Atom lasers -- IV: Quantum information processing -- 12 Quantum cryptography -- 12.1 Classical cryptography -- 12.2 Basic principles of quantum cryptography -- 12.3 Quantum key distribution according to the BB84 protocol -- 12.4 System errors and identity verification -- 12.5 Single-photon sources -- 12.6 Practical demonstrations of quantum cryptography -- 13 Quantum computing -- 13.1 Introduction -- 13.2 Quantum bits (qubits) -- 13.3 Quantum logic gates and circuits -- 13.4 Decoherence and error correction -- 13.5 Applications of quantum computers -- 13.6 Experimental implementations of quantum computation -- 13.7 Outlook -- 14 Entangled states and quantum teleportation -- 14.1 Entangled states -- 14.2 Generation of entangled photon pairs -- 14.3 Single-photon interference experiments -- 14.4 Bell's theorem -- 14.5 Principles of teleportation -- 14.6 Experimental demonstration of teleportation.
14.7 Discussion -- Appendices -- A: Poisson statistics -- B: Parametric amplification -- B.1 Wave propagation in a nonlinear medium -- B.2 Degenerate parametric amplification -- C: The density of states -- D: Low-dimensional semiconductor structures -- D.1 Quantum confinement -- D.2 Quantum wells -- D.3 Quantum dots -- E: Nuclear magnetic resonance -- E.1 Basic principles -- E.2 The rotating frame transformation -- E.3 The Bloch equations -- F: Bose-Einstein condensation -- F.1 Classical and quantum statistics -- F.2 Statistical mechanics of Bose-Einstein condensation -- F.3 Bose-Einstein condensed systems -- Solutions and hints to the exercises -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y -- Z.
Summary: Quantum optics: an introduction is a modern textbook written primarily for advanced undergraduate and masters level students in physics. In addition to standard topics, the text includes a broad range of topics in applied quantum optics such as laser cooling, Bose-Einstein condensation and quantum information processing.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan
Available EBKAF00029068
Ebrary Ebrary Algeria
Available
Ebrary Ebrary Cyprus
Available
Ebrary Ebrary Egypt
Available
Ebrary Ebrary Libya
Available
Ebrary Ebrary Morocco
Available
Ebrary Ebrary Nepal
Available EBKNP00029068
Ebrary Ebrary Sudan

Access a wide range of magazines and books using Pressreader and Ebook central.

Enjoy your reading, British Council Sudan.

Available
Ebrary Ebrary Tunisia
Available
Total holds: 0

Intro -- Contents -- List of symbols -- List of abbreviations -- I: Introduction and background -- 1 Introduction -- 1.1 What is quantum optics? -- 1.2 A brief history of quantum optics -- 1.3 How to use this book -- 2 Classical optics -- 2.1 Maxwell's equations and electromagnetic waves -- 2.2 Diffraction and interference -- 2.3 Coherence -- 2.4 Nonlinear optics -- 3 Quantum mechanics -- 3.1 Formalism of quantum mechanics -- 3.2 Quantized states in atoms -- 3.3 The harmonic oscillator -- 3.4 The Stern-Gerlach experiment -- 3.5 The band theory of solids -- 4 Radiative transitions in atoms -- 4.1 Einstein coefficients -- 4.2 Radiative transition rates -- 4.3 Selection rules -- 4.4 The width and shape of spectral lines -- 4.5 Line broadening in solids -- 4.6 Optical properties of semiconductors -- 4.7 Lasers -- II: Photons -- 5 Photon statistics -- 5.1 Introduction -- 5.2 Photon-counting statistics -- 5.3 Coherent light: Poissonian photon statistics -- 5.4 Classification of light by photon statistics -- 5.5 Super-Poissonian light -- 5.6 Sub-Poissonian light -- 5.7 Degradation of photon statistics by losses -- 5.8 Theory of photodetection -- 5.9 Shot noise in photodiodes -- 5.10 Observation of sub-Poissonian photon statistics -- 6 Photon antibunching -- 6.1 Introduction: the intensity interferometer -- 6.2 Hanbury Brown-Twiss experiments and classical intensity fluctuations -- 6.3 The second-order correlation function g[sup(2)](τ) -- 6.4 Hanbury Brown-Twiss experiments with photons -- 6.5 Photon bunching and antibunching -- 6.6 Experimental demonstrations of photon antibunching -- 6.7 Single-photon sources -- 7 Coherent states and squeezed light -- 7.1 Light waves as classical harmonic oscillators -- 7.2 Phasor diagrams and field quadratures -- 7.3 Light as a quantum harmonic oscillator -- 7.4 The vacuum field -- 7.5 Coherent states.

7.6 Shot noise and number-phase uncertainty -- 7.7 Squeezed states -- 7.8 Detection of squeezed light -- 7.9 Generation of squeezed states -- 7.10 Quantum noise in amplifiers -- 8 Photon number states -- 8.1 Operator solution of the harmonic oscillator -- 8.2 The number state representation -- 8.3 Photon number states -- 8.4 Coherent states -- 8.5 Quantum theory of Hanbury Brown-Twiss experiments -- III: Atom-photon interactions -- 9 Resonant light-atom interactions -- 9.1 Introduction -- 9.2 Preliminary concepts -- 9.3 The time-dependent Schrödinger equation -- 9.4 The weak-field limit: Einstein's B coefficient -- 9.5 The strong-field limit: Rabi oscillations -- 9.6 The Bloch sphere -- 10 Atoms in cavities -- 10.1 Optical cavities -- 10.2 Atom-cavity coupling -- 10.3 Weak coupling -- 10.4 Strong coupling -- 10.5 Applications of cavity effects -- 11 Cold atoms -- 11.1 Introduction -- 11.2 Laser cooling -- 11.3 Bose-Einstein condensation -- 11.4 Atom lasers -- IV: Quantum information processing -- 12 Quantum cryptography -- 12.1 Classical cryptography -- 12.2 Basic principles of quantum cryptography -- 12.3 Quantum key distribution according to the BB84 protocol -- 12.4 System errors and identity verification -- 12.5 Single-photon sources -- 12.6 Practical demonstrations of quantum cryptography -- 13 Quantum computing -- 13.1 Introduction -- 13.2 Quantum bits (qubits) -- 13.3 Quantum logic gates and circuits -- 13.4 Decoherence and error correction -- 13.5 Applications of quantum computers -- 13.6 Experimental implementations of quantum computation -- 13.7 Outlook -- 14 Entangled states and quantum teleportation -- 14.1 Entangled states -- 14.2 Generation of entangled photon pairs -- 14.3 Single-photon interference experiments -- 14.4 Bell's theorem -- 14.5 Principles of teleportation -- 14.6 Experimental demonstration of teleportation.

14.7 Discussion -- Appendices -- A: Poisson statistics -- B: Parametric amplification -- B.1 Wave propagation in a nonlinear medium -- B.2 Degenerate parametric amplification -- C: The density of states -- D: Low-dimensional semiconductor structures -- D.1 Quantum confinement -- D.2 Quantum wells -- D.3 Quantum dots -- E: Nuclear magnetic resonance -- E.1 Basic principles -- E.2 The rotating frame transformation -- E.3 The Bloch equations -- F: Bose-Einstein condensation -- F.1 Classical and quantum statistics -- F.2 Statistical mechanics of Bose-Einstein condensation -- F.3 Bose-Einstein condensed systems -- Solutions and hints to the exercises -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y -- Z.

Quantum optics: an introduction is a modern textbook written primarily for advanced undergraduate and masters level students in physics. In addition to standard topics, the text includes a broad range of topics in applied quantum optics such as laser cooling, Bose-Einstein condensation and quantum information processing.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.