Amazon cover image
Image from Amazon.com

Atomic Physics.

By: Series: Oxford Master Series in Physics SerPublisher: Oxford : Oxford University Press, Incorporated, 2005Copyright date: ©2005Description: 1 online resource (486 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780191523144
Subject(s): Genre/Form: Additional physical formats: Print version:: Atomic PhysicsDDC classification:
  • 539.7
LOC classification:
  • QC173.F664 2005
Online resources:
Contents:
Intro -- Series page -- Title page -- Copyright page -- Preface -- Contents -- 1 Early Atomic Physics -- 1.1 Introduction -- 1.2 Spectrum of Atomic Hydrogen -- 1.3 Bohr's Theory -- 1.4 Relativistic Effects -- 1.5 Moseley and the Atomic Number -- 1.6 Radiative Decay -- 1.7 Einstein A and B Coefficients -- 1.8 The Zeeman Effect -- 1.8.1 Experimental Observation of the Zeeman Effect -- 1.9 Summary of Atomic Units -- Exercises -- 2 The Hydrogen Atom -- 2.1 The Schrödinger Equation -- 2.1.1 Solution of the Angular Equation -- 2.1.2 Solution of the Radial Equation -- 2.2 Transitions -- 2.2.1 Selection Rules -- 2.2.2 Integration with Respect to θ -- 2.2.3 Parity -- 2.3 Fine Structure -- 2.3.1 Spin of the Electron -- 2.3.2 The Spin-orbit Interaction -- 2.3.3 The Fine Structure of Hydrogen -- 2.3.4 The Lamb Shift -- 2.3.5 Transitions between Fine-Structure Levels -- Further Reading -- Exercises -- 3 Helium -- 3.1 The Ground State of Helium -- 3.2 Excited States of Helium -- 3.2.1 Spin Eigenstates -- 3.2.2 Transitions in Helium -- 3.3 Evaluation of the Integrals in Helium -- 3.3.1 Ground State -- 3.3.2 Excited States: The Direct Integral -- 3.3.3 Excited States: The Exchange Integral -- Further Reading -- Exercises -- 4 The Alkalis -- 4.1 Shell Structure and the Periodic Table -- 4.2 The Quantum Defect -- 4.3 The Central-Field Approximation -- 4.4 Numerical Solution of the Schrödinger Equation -- 4.4.1 Self-Consistent Solutions -- 4.5 The Spin-Orbit Interaction: A Quantum Mechanical Approach -- 4.6 Fine Structure in the Alkalis -- 4.6.1 Relative Intensities of Fine-Structure Transitions -- Further Reading -- Exercises -- 5 The LS-Coupling Scheme -- 5.1 Fine Structure in the LS-Coupling Scheme -- 5.2 The jj-Coupling Scheme -- 5.3 Intermediate Coupling: The Transition between Coupling Schemes -- 5.4 Selection Rules in the LS-Coupling Scheme.
5.5 The Zeeman Effect -- 5.6 Summary -- Further Reading -- Exercises -- 6 Hyperfine Structure and Isotope Shift -- 6.1 Hyperfine Structure -- 6.1.1 Hyperfine Structure for s-Electrons -- 6.1.2 Hydrogen Maser -- 6.1.3 Hyperfine Structure for l ≠ 0 -- 6.1.4 Comparison of Hyperfine and Fine Structures -- 6.2 Isotope Shift -- 6.2.1 Mass Effects -- 6.2.2 Volume Shift -- 6.2.3 Nuclear Information from Atoms -- 6.3 Zeeman Effect and Hyperfine Structure -- 6.3.1 Zeeman Effect of a Weak Field, μBB A -- 6.3.3 Intermediate Field Strength -- 6.4 Measurement of Hyperfine Structure -- 6.4.1 The Atomic-Beam Technique -- 6.4.2 Atomic Clocks -- Further Reading -- Exercises -- 7 The Interaction of Atoms with Radiation -- 7.1 Setting up the Equations -- 7.1.1 Perturbation by an Oscillating Electric Field -- 7.1.2 The Rotating-Wave Approximation -- 7.2 The Einstein B Coefficients -- 7.3 Interaction with Monochromatic Radiation -- 7.3.1 The Concepts of π-Pulses and π/2-Pulses -- 7.3.2 The Bloch Vector and Bloch Sphere -- 7.4 Ramsey Fringes -- 7.5 Radiative Damping -- 7.5.1 The Damping of a Classical Dipole -- 7.5.2 The Optical Bloch Equations -- 7.6 The Optical Absorption Cross-Section -- 7.6.1 Cross-Section for Pure Radiative Broadening -- 7.6.2 The saturation Intensity -- 7.6.3 Power Broadening -- 7.7 The a.c. Stark Effect or Light Shift -- 7.8 Comment on Semiclassical Theory -- 7.9 Conclusions -- Further Reading -- Exercises -- 8 Doppler-Free Laser Spectroscopy -- 8.1 Doppler Broadening of Spectral Lines -- 8.2 The Crossed-Beam Method -- 8.3 Saturated Absorption Spectroscopy -- 8.3.1 Principle of Saturated Absorption Spectroscopy -- 8.3.2 Cross-Over Resonances in Saturation Spectroscopy -- 8.4 Two-Photon Spectroscopy -- 8.5 Calibration in Laser Spectroscopy -- 8.5.1 Calibration of the Relative Frequency.
8.5.2 Absolute Calibration -- 8.5.3 Optical Frequency Combs -- Further Reading -- Exercises -- 9 Laser Cooling and Trapping -- 9.1 The Scattering Force -- 9.2 Slowing an Atomic Beam -- 9.2.1 Chirp Cooling -- 9.3 The Optical Molasses Technique -- 9.3.1 The Doppler Cooling Limit -- 9.4 The Magneto-Optical Trap -- 9.5 Introduction to the Dipole Force -- 9.6 Theory of the Dipole Force -- 9.6.1 Optical Lattice -- 9.7 The Sisyphus Cooling Technique -- 9.7.1 General Remarks -- 9.7.2 Detailed Description of Sisyphus Cooling -- 9.7.3 Limit of the Sisyphus Cooling Mechanism -- 9.8 Raman Transitions -- 9.8.1 Velocity Selection by Raman Transitions -- 9.8.2 Raman Cooling -- 9.9 An Atomic Fountain -- 9.10 Conclusions -- Exercises -- 10 Magnetic Trapping, Evaporative Cooling and Bose-Einstein Condensation -- 10.1 Principle of Magnetic Trapping -- 10.2 Magnetic Trapping -- 10.2.1 Confinement in the Radial Direction -- 10.2.2 Confinement in the Axial Direction -- 10.3 Evaporative Cooling -- 10.4 Bose-Einstein Condensation -- 10.5 Bose-Einstein Condensation in Trapped Atomic Vapours -- 10.5.1 The Scattering Length -- 10.6 A Bose-Einstein Condensate -- 10.7 Properties of Bose-Condensed Gases -- 10.7.1 Speed of Sound -- 10.7.2 Healing Length -- 10.7.3 The Coherence of a Bose-Einstein Condensate -- 10.7.4 The Atom Laser -- 10.8 Conclusions -- Exercises -- 11 Atom Interferometry -- 11.1 Young's Double-Slit Experiment -- 11.2 A Diffraction Grating for Atoms -- 11.3 The Three-Grating Interferometer -- 11.4 Measurement of Rotation -- 11.5 The Diffraction of Atoms by Light -- 11.5.1 Interferometry with Raman Transitions -- 11.6 Conclusions -- Further Reading -- Exercises -- 12 Ion Traps -- 12.1 The Force on Ions in an Electric Field -- 12.2 Earnshaw's Theorem -- 12.3 The Paul Trap -- 12.3.1 Equilibrium of a Ball on a Rotating Saddle.
12.3.2 The Effective Potential in an a.c. Field -- 12.3.3 The Linear Paul Trap -- 12.4 Buffer Gas Cooling -- 12.5 Laser Cooling of Trapped Ions -- 12.6 Quantum Jumps -- 12.7 The Penning Trap and The Paul Trap -- 12.7.1 The Penning Trap -- 12.7.2 Mass Spectroscopy of Ions -- 12.7.3 The Anomalous Magnetic Moment of the Electron -- 12.8 Electron Beam ion Trap -- 12.9 Resolved Sideband Cooling -- 12.10 Summary of Ion Traps -- Further Reading -- Exercises -- 13 Quantum Computing -- 13.1 Qubits and Their Properties -- 13.1.1 Entanglement -- 13.2 A Quantum Logic Gate -- 13.2.1 Making a CNOT Gate -- 13.3 Parallelism in Quantum Computing -- 13.4 Summary of Quantum Computers -- 13.5 Decoherence and Quantum Error Correction -- 13.6 Conclusion -- Further Reading -- Exercises -- A Appendix A: Perturbation Theory -- A.1 Mathematics of Perturbation Theory -- A.2 Interaction of Classical Oscillators of Similar Frequencies -- B Appendix B: The Calculation of Electrostatic Energies -- C Appendix C: Magnetic Dipole Transitions -- D Appendix D: The Line Shape in Saturated Absorption Spectroscopy -- E Appendix E: Raman and Two-Photon Transitions -- E.1 Raman transitions -- E.2 Two-Photon Transitions -- F Appendix F: The Statistical Mechanics of Bose-Einstein Condensation -- F.1 The Statistical Mechanics of Photons -- F.2 Bose-Einstein Condensation -- F.2.1 Bose-Einstein Condensation in a Harmonic Trap -- References -- Index.
Summary: This book describes atomic physics and the latest advances in this field at a level suitable for fourth year undergraduates. The numerous examples of the modern applications of atomic physics include Bose-Einstein condensation of atoms, matter-wave interferometry and quantum computing with trapped ions.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan Available EBKAF00027724
Ebrary Ebrary Algeria Available
Ebrary Ebrary Cyprus Available
Ebrary Ebrary Egypt Available
Ebrary Ebrary Libya Available
Ebrary Ebrary Morocco Available
Ebrary Ebrary Nepal Available EBKNP00027724
Ebrary Ebrary Sudan Available
Ebrary Ebrary Tunisia Available
Total holds: 0

Intro -- Series page -- Title page -- Copyright page -- Preface -- Contents -- 1 Early Atomic Physics -- 1.1 Introduction -- 1.2 Spectrum of Atomic Hydrogen -- 1.3 Bohr's Theory -- 1.4 Relativistic Effects -- 1.5 Moseley and the Atomic Number -- 1.6 Radiative Decay -- 1.7 Einstein A and B Coefficients -- 1.8 The Zeeman Effect -- 1.8.1 Experimental Observation of the Zeeman Effect -- 1.9 Summary of Atomic Units -- Exercises -- 2 The Hydrogen Atom -- 2.1 The Schrödinger Equation -- 2.1.1 Solution of the Angular Equation -- 2.1.2 Solution of the Radial Equation -- 2.2 Transitions -- 2.2.1 Selection Rules -- 2.2.2 Integration with Respect to θ -- 2.2.3 Parity -- 2.3 Fine Structure -- 2.3.1 Spin of the Electron -- 2.3.2 The Spin-orbit Interaction -- 2.3.3 The Fine Structure of Hydrogen -- 2.3.4 The Lamb Shift -- 2.3.5 Transitions between Fine-Structure Levels -- Further Reading -- Exercises -- 3 Helium -- 3.1 The Ground State of Helium -- 3.2 Excited States of Helium -- 3.2.1 Spin Eigenstates -- 3.2.2 Transitions in Helium -- 3.3 Evaluation of the Integrals in Helium -- 3.3.1 Ground State -- 3.3.2 Excited States: The Direct Integral -- 3.3.3 Excited States: The Exchange Integral -- Further Reading -- Exercises -- 4 The Alkalis -- 4.1 Shell Structure and the Periodic Table -- 4.2 The Quantum Defect -- 4.3 The Central-Field Approximation -- 4.4 Numerical Solution of the Schrödinger Equation -- 4.4.1 Self-Consistent Solutions -- 4.5 The Spin-Orbit Interaction: A Quantum Mechanical Approach -- 4.6 Fine Structure in the Alkalis -- 4.6.1 Relative Intensities of Fine-Structure Transitions -- Further Reading -- Exercises -- 5 The LS-Coupling Scheme -- 5.1 Fine Structure in the LS-Coupling Scheme -- 5.2 The jj-Coupling Scheme -- 5.3 Intermediate Coupling: The Transition between Coupling Schemes -- 5.4 Selection Rules in the LS-Coupling Scheme.

5.5 The Zeeman Effect -- 5.6 Summary -- Further Reading -- Exercises -- 6 Hyperfine Structure and Isotope Shift -- 6.1 Hyperfine Structure -- 6.1.1 Hyperfine Structure for s-Electrons -- 6.1.2 Hydrogen Maser -- 6.1.3 Hyperfine Structure for l ≠ 0 -- 6.1.4 Comparison of Hyperfine and Fine Structures -- 6.2 Isotope Shift -- 6.2.1 Mass Effects -- 6.2.2 Volume Shift -- 6.2.3 Nuclear Information from Atoms -- 6.3 Zeeman Effect and Hyperfine Structure -- 6.3.1 Zeeman Effect of a Weak Field, μBB A -- 6.3.3 Intermediate Field Strength -- 6.4 Measurement of Hyperfine Structure -- 6.4.1 The Atomic-Beam Technique -- 6.4.2 Atomic Clocks -- Further Reading -- Exercises -- 7 The Interaction of Atoms with Radiation -- 7.1 Setting up the Equations -- 7.1.1 Perturbation by an Oscillating Electric Field -- 7.1.2 The Rotating-Wave Approximation -- 7.2 The Einstein B Coefficients -- 7.3 Interaction with Monochromatic Radiation -- 7.3.1 The Concepts of π-Pulses and π/2-Pulses -- 7.3.2 The Bloch Vector and Bloch Sphere -- 7.4 Ramsey Fringes -- 7.5 Radiative Damping -- 7.5.1 The Damping of a Classical Dipole -- 7.5.2 The Optical Bloch Equations -- 7.6 The Optical Absorption Cross-Section -- 7.6.1 Cross-Section for Pure Radiative Broadening -- 7.6.2 The saturation Intensity -- 7.6.3 Power Broadening -- 7.7 The a.c. Stark Effect or Light Shift -- 7.8 Comment on Semiclassical Theory -- 7.9 Conclusions -- Further Reading -- Exercises -- 8 Doppler-Free Laser Spectroscopy -- 8.1 Doppler Broadening of Spectral Lines -- 8.2 The Crossed-Beam Method -- 8.3 Saturated Absorption Spectroscopy -- 8.3.1 Principle of Saturated Absorption Spectroscopy -- 8.3.2 Cross-Over Resonances in Saturation Spectroscopy -- 8.4 Two-Photon Spectroscopy -- 8.5 Calibration in Laser Spectroscopy -- 8.5.1 Calibration of the Relative Frequency.

8.5.2 Absolute Calibration -- 8.5.3 Optical Frequency Combs -- Further Reading -- Exercises -- 9 Laser Cooling and Trapping -- 9.1 The Scattering Force -- 9.2 Slowing an Atomic Beam -- 9.2.1 Chirp Cooling -- 9.3 The Optical Molasses Technique -- 9.3.1 The Doppler Cooling Limit -- 9.4 The Magneto-Optical Trap -- 9.5 Introduction to the Dipole Force -- 9.6 Theory of the Dipole Force -- 9.6.1 Optical Lattice -- 9.7 The Sisyphus Cooling Technique -- 9.7.1 General Remarks -- 9.7.2 Detailed Description of Sisyphus Cooling -- 9.7.3 Limit of the Sisyphus Cooling Mechanism -- 9.8 Raman Transitions -- 9.8.1 Velocity Selection by Raman Transitions -- 9.8.2 Raman Cooling -- 9.9 An Atomic Fountain -- 9.10 Conclusions -- Exercises -- 10 Magnetic Trapping, Evaporative Cooling and Bose-Einstein Condensation -- 10.1 Principle of Magnetic Trapping -- 10.2 Magnetic Trapping -- 10.2.1 Confinement in the Radial Direction -- 10.2.2 Confinement in the Axial Direction -- 10.3 Evaporative Cooling -- 10.4 Bose-Einstein Condensation -- 10.5 Bose-Einstein Condensation in Trapped Atomic Vapours -- 10.5.1 The Scattering Length -- 10.6 A Bose-Einstein Condensate -- 10.7 Properties of Bose-Condensed Gases -- 10.7.1 Speed of Sound -- 10.7.2 Healing Length -- 10.7.3 The Coherence of a Bose-Einstein Condensate -- 10.7.4 The Atom Laser -- 10.8 Conclusions -- Exercises -- 11 Atom Interferometry -- 11.1 Young's Double-Slit Experiment -- 11.2 A Diffraction Grating for Atoms -- 11.3 The Three-Grating Interferometer -- 11.4 Measurement of Rotation -- 11.5 The Diffraction of Atoms by Light -- 11.5.1 Interferometry with Raman Transitions -- 11.6 Conclusions -- Further Reading -- Exercises -- 12 Ion Traps -- 12.1 The Force on Ions in an Electric Field -- 12.2 Earnshaw's Theorem -- 12.3 The Paul Trap -- 12.3.1 Equilibrium of a Ball on a Rotating Saddle.

12.3.2 The Effective Potential in an a.c. Field -- 12.3.3 The Linear Paul Trap -- 12.4 Buffer Gas Cooling -- 12.5 Laser Cooling of Trapped Ions -- 12.6 Quantum Jumps -- 12.7 The Penning Trap and The Paul Trap -- 12.7.1 The Penning Trap -- 12.7.2 Mass Spectroscopy of Ions -- 12.7.3 The Anomalous Magnetic Moment of the Electron -- 12.8 Electron Beam ion Trap -- 12.9 Resolved Sideband Cooling -- 12.10 Summary of Ion Traps -- Further Reading -- Exercises -- 13 Quantum Computing -- 13.1 Qubits and Their Properties -- 13.1.1 Entanglement -- 13.2 A Quantum Logic Gate -- 13.2.1 Making a CNOT Gate -- 13.3 Parallelism in Quantum Computing -- 13.4 Summary of Quantum Computers -- 13.5 Decoherence and Quantum Error Correction -- 13.6 Conclusion -- Further Reading -- Exercises -- A Appendix A: Perturbation Theory -- A.1 Mathematics of Perturbation Theory -- A.2 Interaction of Classical Oscillators of Similar Frequencies -- B Appendix B: The Calculation of Electrostatic Energies -- C Appendix C: Magnetic Dipole Transitions -- D Appendix D: The Line Shape in Saturated Absorption Spectroscopy -- E Appendix E: Raman and Two-Photon Transitions -- E.1 Raman transitions -- E.2 Two-Photon Transitions -- F Appendix F: The Statistical Mechanics of Bose-Einstein Condensation -- F.1 The Statistical Mechanics of Photons -- F.2 Bose-Einstein Condensation -- F.2.1 Bose-Einstein Condensation in a Harmonic Trap -- References -- Index.

This book describes atomic physics and the latest advances in this field at a level suitable for fourth year undergraduates. The numerous examples of the modern applications of atomic physics include Bose-Einstein condensation of atoms, matter-wave interferometry and quantum computing with trapped ions.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.