Glasses for Photonics.

By: Yamane, MasayukiContributor(s): Asahara, YoshiyukiPublisher: Cambridge : Cambridge University Press, 2000Copyright date: ©2000Description: 1 online resource (283 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9780511149122Subject(s): GlassGenre/Form: Electronic books. Additional physical formats: Print version:: Glasses for PhotonicsDDC classification: 621.36 LOC classification: TA450 .Y36 2000Online resources: Click to View
Contents:
Cover -- Half-title -- Title -- Copyright -- Contents -- Preface -- 1 Glass properties -- Introduction -- 1.1 Features of glass as an industrial material -- 1.1.1 Structural features -- 1.1.1.1 Atomic arrangement -- 1.1.1.2 Chemical composition -- 1.1.2 Thermodynamic features -- 1.1.2.1 Glass transition -- 1.1.2.2 Thermal stability and structural relaxation -- 1.1.3 Optical features -- 1.1.3.1 Transparency -- 1.1.3.2 Linear and non-linear refractive index, and dispersion -- 1.2 Classification of glasses by preparation method -- 1.2.1 Glass by melt-quenching technique -- 1.2.2 Glass by chemical vapor deposition -- 1.2.3 Glass by sol-gel process -- 1.3 Important glass systems -- 1.3.1 Oxide glasses -- 1.3.1.1 Silica glass -- 1.3.1.2 Silicate glasses -- 1.3.1.3 Nonsilicate oxide glasses -- 1.3.2 Halide and oxy-halide glasses -- 1.3.2.1 Fluoride glasses -- 1.3.2.2 Oxy-halide glasses -- 1.3.3 Chalcogenide glasses -- 1.4 Secondary treatment of a glass for the development of a special function -- 1.4.1 Thermal treatment -- 1.4.1.1 Crystallization -- 1.4.1.2 Precipitation of nano-particles -- 1.4.1.3 Phase separation -- 1.4.2 Ion exchange -- References -- 2 Gradient index glass -- Introduction -- 2.1 Applications -- 2.2 Design of radial gradient index profiles -- 2.3 Parameters for fabrication of index gradient -- 2.3.1 Gradient index profile -- 2.3.2 Maximum index difference -- 2.3.3 Chromatic property -- 2.3.4 Stress -- 2.4 Materials and fabrication techniques -- 2.4.1 Ion exchange -- 2.4.1.1 Conventional ion-exchange technique -- 2.4.1.2 Modified ion-exchange technique -- 2.4.2 Molecular stuffng technique -- 2.4.3 Sol-gel technique -- 2.4.3.1 Partial leaching technique -- 2.4.3.2 Interdiffusion technique -- 2.4.4 Comparison between various fabrication techniques -- 2.5 Spherical gradient index lens -- References -- 3 Laser glass -- Introduction.
3.1 Fundamentals of laser physics -- 3.1.1 Stimulated emission [2, 3] -- 3.1.2 Cross section [3] -- 3.1.3 Creation of a population inversion [2, 3] -- 3.1.3.1 Population inversion -- 3.1.3.2 Three-level system -- 3.1.3.3 Four-level system -- 3.1.4 Laser oscillation by resonant cavity [1-3] -- 3.1.5 Active ions for laser glasses -- 3.1.6 Laser parameters and their host dependence [4, 13-16, 19, 20] -- 3.1.7 Nonradiative relaxation [4, 13, 15, 17] -- 3.1.7.1 Multiphonon relaxation [4, 13, 15] -- 3.1.7.2 Co-operative relaxation [4, 13, 17] -- 3.2 Bulk laser glasses -- 3.2.1 Compositional dependence of laser parameters of Nd3+-doped glasses -- 3.2.2 Nonradiative relaxation of rare-earth ions in glasses -- 3.2.3 Properties of practical laser glasses -- 3.3 Fiber lasers and amplifiers -- 3.3.1 General description of fiber laser -- 3.3.1.1 History -- 3.3.1.2 Benefits of lasers in fiber form -- 3.3.1.3 Fabrication techniques for fiber lasers -- 3.3.2 Fiber amplifiers -- 3.3.2.1 General descriptions [8, 64, 67] -- 3.3.2.2 1.55 µm amplification in Er3+-doped fiber [32, 65] -- 3.3.2.3 1.3 µm amplification in Nd3+-doped fiber -- 3.3.2.4 1.3 µm amplification in Pr3+-doped fiber -- 3.3.2.5 1.3 µm amplification in Dy3+-doped glasses -- 3.3.3 Fiber laser oscillators -- 3.3.4 Recent progress -- 3.4 Waveguide lasers and amplifiers -- 3.4.1 Fabrication of channel waveguide structure -- 3.4.2 Lasing characteristics -- 3.4.2.1 Nd3+-doped waveguide laser -- 3.4.2.2 Er3+-doped waveguide laser -- 3.4.2.3 Other rare-earth-doped waveguide lasers -- 3.4.3 Amplification characteristics -- 3.4.3.1 Nd3+-doped waveguide amplifier -- 3.4.3.2 Er3+-doped waveguide amplifier -- 3.4.4 Devices based on glass waveguide lasers -- References -- 4 Nonlinear optical glass -- Introduction -- 4.1 Fundamentals of nonlinear optics and applications.
4.1.1 General description of nonlinear polarization -- 4.1.2 Optical nonlinearity of the medium -- 4.1.3 Measurement of nonlinear optical properties -- 4.1.3.1 Degenerate four-wave mixing (DFWM) [13, 14] -- 4.1.3.2 Forward DFWM -- 4.1.3.3 Pump-probe technique [18] -- 4.1.3.4 Maker fringe method (THG method) [19, 20] -- 4.1.3.5 Z-scan method [23, 24] -- 4.1.4 Applications of optical nonlinear materials -- 4.2 Nonresonant nonlinear glasses -- 4.2.1 Nonlinearity of dielectric materials -- 4.2.2 BGO model [35] for nonresonant optical nonlinearities -- 4.2.3 Lines' model for nonresonant optical nonlinearities -- 4.2.4 Nuclear contributions -- 4.2.5 Nonlinear optical properties of nonresonant nonlinear glasses -- 4.2.5.1 Nonlinear refractive index -- 4.2.5.2 Nonlinear response time -- 4.2.5.3 Applications -- 4.3 Semiconductor-doped glasses -- 4.3.1 Fundamentals of semiconductors -- 4.3.1.1 Band theory of semiconductor [99-102] -- 4.3.1.2 Optical properties of semiconductors [2, 101-106] -- 4.3.2 Linear optical properties of semiconductor-doped glasses -- 4.3.3 Nonlinear optical susceptibilities of the strong confinement case -- 4.3.4 Nonlinear response time in the strong confinement case -- 4.3.4.1 Three-level system -- 4.3.4.2 Intensity-dependent response -- 4.3.5 Photodarkening effect -- 4.3.5.1 Photodarkening mechanisms -- 4.3.5.2 Origin of the trap levels -- 4.3.6 Nonlinear optical properties in the weak confinement case -- 4.3.6.1 Excitonic enhancement of…in microcrystallite -- 4.3.6.2 Excitonic optical nonlinearity in semiconductor-doped glasses -- 4.3.7 Fabrication techniques -- 4.3.8 Applications of semiconductor-doped glasses -- 4.4 Metal-doped glasses -- 4.4.1 Fundamentals of optical properties of metal -- 4.4.1.1 Bulk metal (Drude's theory) -- 4.4.1.2 Small metal particles (mean free path theory) [213, 214, 216, 217].
4.4.1.3 Composite materials [213, 214, 216-218] -- 4.4.2 Optical nonlinear mechanisms of metal-doped composite materials -- 4.4.2.1 Local electric field effect (dielectric confinement) [218, 223-225] -- 4.4.2.2 Quantum mechanical effect (quantum confinement) [224-227] -- 4.4.3 Nonlinear optical properties of metal-doped glasses -- 4.4.3.1 Nonlinear susceptibility… -- 4.4.3.2 Nonlinear susceptibility of metal particle… -- 4.4.3.3 Response time -- 4.4.3.4 Figure of merit -- 4.4.4 Fabrication techniques -- 4.5 Comparisons of optical nonlinearities of various nonlinear glass materials -- References -- 5 Magneto-optical glass -- Introduction -- 5.1 Magnetic properties of materials -- 5.1.1 Origin of magnetics of materials -- 5.1.1.1 Permanent magnetic dipoles [1, 2] -- 5.1.1.2 Effect of a magnetic field on an atom [1] -- 5.1.2 Macroscopic description of the magnetic properties of materials [1, 2] -- 5.1.2.1 Magnetization -- 5.1.2.2 Diamagnetic materials -- 5.1.2.3 Paramagnetic materials -- 5.2 Fundamentals of the Faraday effect -- 5.2.1 Origin of Faraday rotation [3-6] -- 5.2.2 Verdet constant [8, 9] -- 5.3 Faraday effect in glasses -- 5.3.1 Diamagnetic glasses -- 5.3.2 Paramagnetic glasses -- 5.3.3 Applications -- 5.3.3.1 Optical isolator (paramagnetic glasses) -- 5.3.3.2 Current sensor (diamagnetic glasses) -- 5 References -- Index.
Summary: An authoritative work on photonic glasses by top Japanese authors.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan
Available EBKAF000114
Ebrary Ebrary Algeria
Available
Ebrary Ebrary Cyprus
Available
Ebrary Ebrary Egypt
Available
Ebrary Ebrary Libya
Available
Ebrary Ebrary Morocco
Available
Ebrary Ebrary Nepal
Available EBKNP000114
Ebrary Ebrary Sudan

Access a wide range of magazines and books using Pressreader and Ebook central.

Enjoy your reading, British Council Sudan.

Available
Ebrary Ebrary Tunisia
Available
Total holds: 0

Cover -- Half-title -- Title -- Copyright -- Contents -- Preface -- 1 Glass properties -- Introduction -- 1.1 Features of glass as an industrial material -- 1.1.1 Structural features -- 1.1.1.1 Atomic arrangement -- 1.1.1.2 Chemical composition -- 1.1.2 Thermodynamic features -- 1.1.2.1 Glass transition -- 1.1.2.2 Thermal stability and structural relaxation -- 1.1.3 Optical features -- 1.1.3.1 Transparency -- 1.1.3.2 Linear and non-linear refractive index, and dispersion -- 1.2 Classification of glasses by preparation method -- 1.2.1 Glass by melt-quenching technique -- 1.2.2 Glass by chemical vapor deposition -- 1.2.3 Glass by sol-gel process -- 1.3 Important glass systems -- 1.3.1 Oxide glasses -- 1.3.1.1 Silica glass -- 1.3.1.2 Silicate glasses -- 1.3.1.3 Nonsilicate oxide glasses -- 1.3.2 Halide and oxy-halide glasses -- 1.3.2.1 Fluoride glasses -- 1.3.2.2 Oxy-halide glasses -- 1.3.3 Chalcogenide glasses -- 1.4 Secondary treatment of a glass for the development of a special function -- 1.4.1 Thermal treatment -- 1.4.1.1 Crystallization -- 1.4.1.2 Precipitation of nano-particles -- 1.4.1.3 Phase separation -- 1.4.2 Ion exchange -- References -- 2 Gradient index glass -- Introduction -- 2.1 Applications -- 2.2 Design of radial gradient index profiles -- 2.3 Parameters for fabrication of index gradient -- 2.3.1 Gradient index profile -- 2.3.2 Maximum index difference -- 2.3.3 Chromatic property -- 2.3.4 Stress -- 2.4 Materials and fabrication techniques -- 2.4.1 Ion exchange -- 2.4.1.1 Conventional ion-exchange technique -- 2.4.1.2 Modified ion-exchange technique -- 2.4.2 Molecular stuffng technique -- 2.4.3 Sol-gel technique -- 2.4.3.1 Partial leaching technique -- 2.4.3.2 Interdiffusion technique -- 2.4.4 Comparison between various fabrication techniques -- 2.5 Spherical gradient index lens -- References -- 3 Laser glass -- Introduction.

3.1 Fundamentals of laser physics -- 3.1.1 Stimulated emission [2, 3] -- 3.1.2 Cross section [3] -- 3.1.3 Creation of a population inversion [2, 3] -- 3.1.3.1 Population inversion -- 3.1.3.2 Three-level system -- 3.1.3.3 Four-level system -- 3.1.4 Laser oscillation by resonant cavity [1-3] -- 3.1.5 Active ions for laser glasses -- 3.1.6 Laser parameters and their host dependence [4, 13-16, 19, 20] -- 3.1.7 Nonradiative relaxation [4, 13, 15, 17] -- 3.1.7.1 Multiphonon relaxation [4, 13, 15] -- 3.1.7.2 Co-operative relaxation [4, 13, 17] -- 3.2 Bulk laser glasses -- 3.2.1 Compositional dependence of laser parameters of Nd3+-doped glasses -- 3.2.2 Nonradiative relaxation of rare-earth ions in glasses -- 3.2.3 Properties of practical laser glasses -- 3.3 Fiber lasers and amplifiers -- 3.3.1 General description of fiber laser -- 3.3.1.1 History -- 3.3.1.2 Benefits of lasers in fiber form -- 3.3.1.3 Fabrication techniques for fiber lasers -- 3.3.2 Fiber amplifiers -- 3.3.2.1 General descriptions [8, 64, 67] -- 3.3.2.2 1.55 µm amplification in Er3+-doped fiber [32, 65] -- 3.3.2.3 1.3 µm amplification in Nd3+-doped fiber -- 3.3.2.4 1.3 µm amplification in Pr3+-doped fiber -- 3.3.2.5 1.3 µm amplification in Dy3+-doped glasses -- 3.3.3 Fiber laser oscillators -- 3.3.4 Recent progress -- 3.4 Waveguide lasers and amplifiers -- 3.4.1 Fabrication of channel waveguide structure -- 3.4.2 Lasing characteristics -- 3.4.2.1 Nd3+-doped waveguide laser -- 3.4.2.2 Er3+-doped waveguide laser -- 3.4.2.3 Other rare-earth-doped waveguide lasers -- 3.4.3 Amplification characteristics -- 3.4.3.1 Nd3+-doped waveguide amplifier -- 3.4.3.2 Er3+-doped waveguide amplifier -- 3.4.4 Devices based on glass waveguide lasers -- References -- 4 Nonlinear optical glass -- Introduction -- 4.1 Fundamentals of nonlinear optics and applications.

4.1.1 General description of nonlinear polarization -- 4.1.2 Optical nonlinearity of the medium -- 4.1.3 Measurement of nonlinear optical properties -- 4.1.3.1 Degenerate four-wave mixing (DFWM) [13, 14] -- 4.1.3.2 Forward DFWM -- 4.1.3.3 Pump-probe technique [18] -- 4.1.3.4 Maker fringe method (THG method) [19, 20] -- 4.1.3.5 Z-scan method [23, 24] -- 4.1.4 Applications of optical nonlinear materials -- 4.2 Nonresonant nonlinear glasses -- 4.2.1 Nonlinearity of dielectric materials -- 4.2.2 BGO model [35] for nonresonant optical nonlinearities -- 4.2.3 Lines' model for nonresonant optical nonlinearities -- 4.2.4 Nuclear contributions -- 4.2.5 Nonlinear optical properties of nonresonant nonlinear glasses -- 4.2.5.1 Nonlinear refractive index -- 4.2.5.2 Nonlinear response time -- 4.2.5.3 Applications -- 4.3 Semiconductor-doped glasses -- 4.3.1 Fundamentals of semiconductors -- 4.3.1.1 Band theory of semiconductor [99-102] -- 4.3.1.2 Optical properties of semiconductors [2, 101-106] -- 4.3.2 Linear optical properties of semiconductor-doped glasses -- 4.3.3 Nonlinear optical susceptibilities of the strong confinement case -- 4.3.4 Nonlinear response time in the strong confinement case -- 4.3.4.1 Three-level system -- 4.3.4.2 Intensity-dependent response -- 4.3.5 Photodarkening effect -- 4.3.5.1 Photodarkening mechanisms -- 4.3.5.2 Origin of the trap levels -- 4.3.6 Nonlinear optical properties in the weak confinement case -- 4.3.6.1 Excitonic enhancement of…in microcrystallite -- 4.3.6.2 Excitonic optical nonlinearity in semiconductor-doped glasses -- 4.3.7 Fabrication techniques -- 4.3.8 Applications of semiconductor-doped glasses -- 4.4 Metal-doped glasses -- 4.4.1 Fundamentals of optical properties of metal -- 4.4.1.1 Bulk metal (Drude's theory) -- 4.4.1.2 Small metal particles (mean free path theory) [213, 214, 216, 217].

4.4.1.3 Composite materials [213, 214, 216-218] -- 4.4.2 Optical nonlinear mechanisms of metal-doped composite materials -- 4.4.2.1 Local electric field effect (dielectric confinement) [218, 223-225] -- 4.4.2.2 Quantum mechanical effect (quantum confinement) [224-227] -- 4.4.3 Nonlinear optical properties of metal-doped glasses -- 4.4.3.1 Nonlinear susceptibility… -- 4.4.3.2 Nonlinear susceptibility of metal particle… -- 4.4.3.3 Response time -- 4.4.3.4 Figure of merit -- 4.4.4 Fabrication techniques -- 4.5 Comparisons of optical nonlinearities of various nonlinear glass materials -- References -- 5 Magneto-optical glass -- Introduction -- 5.1 Magnetic properties of materials -- 5.1.1 Origin of magnetics of materials -- 5.1.1.1 Permanent magnetic dipoles [1, 2] -- 5.1.1.2 Effect of a magnetic field on an atom [1] -- 5.1.2 Macroscopic description of the magnetic properties of materials [1, 2] -- 5.1.2.1 Magnetization -- 5.1.2.2 Diamagnetic materials -- 5.1.2.3 Paramagnetic materials -- 5.2 Fundamentals of the Faraday effect -- 5.2.1 Origin of Faraday rotation [3-6] -- 5.2.2 Verdet constant [8, 9] -- 5.3 Faraday effect in glasses -- 5.3.1 Diamagnetic glasses -- 5.3.2 Paramagnetic glasses -- 5.3.3 Applications -- 5.3.3.1 Optical isolator (paramagnetic glasses) -- 5.3.3.2 Current sensor (diamagnetic glasses) -- 5 References -- Index.

An authoritative work on photonic glasses by top Japanese authors.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.