Amazon cover image
Image from Amazon.com

Computational Liquid Crystal Photonics : Fundamentals, Modelling and Applications.

By: Contributor(s): Publisher: New York : John Wiley & Sons, Incorporated, 2016Copyright date: ©2016Edition: 1st edDescription: 1 online resource (283 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119042006
Subject(s): Genre/Form: Additional physical formats: Print version:: Computational Liquid Crystal Photonics : Fundamentals, Modelling and ApplicationsDDC classification:
  • 621.3815422
LOC classification:
  • TS518 -- .O239 2016eb
Online resources:
Contents:
Intro -- Title Page -- Copyright Page -- Contents -- Preface -- Part I Basic Principles -- Chapter 1 Principles of Waveguides -- 1.1 Introduction -- 1.2 Basic Optical Waveguides -- 1.3 Maxwell's Equations -- 1.4 The Wave Equation and Its Solutions -- 1.5 Boundary Conditions -- 1.6 Phase and Group Velocity -- 1.6.1 Phase Velocity -- 1.6.2 Group Velocity -- 1.7 Modes in Planar Optical Waveguide -- 1.7.1 Radiation Modes -- 1.7.2 Confinement Modes -- 1.8 Dispersion in Planar Waveguide -- 1.8.1 lntermodal Dispersion -- 1.8.2 lntramodal Dispersion -- 1.9 Summary -- References -- Chapter 2 Fundamentals of Photonic Crystals -- 2.1 Introduction -- 2.2 Types of PhCs -- 2.2.1 1D PhCs -- 2.2.2 2D PhCs -- 2.2.3 3D PhCs -- 2.3 Photonic Band Calculations -- 2.3.1 Maxwell's Equations and the PhC -- 2.3.2 Floquet-Bloch Theorem, Reciprocal Lattice, and Brillouin Zones -- 2.3.3 Plane Wave Expansion Method -- 2.3.4 FDTD Method -- 2.3.5 Photonic Band for Square Lattice -- 2.4 Defects in PhCs -- 2.5 Fabrication Techniques of PhCs -- 2.5.1 Electron-Beam Lithography -- 2.5.2 Interference Lithography -- 2.5.3 Nano-Imprint Lithography -- 2.5.4 Colloidal Self-Assembly -- 2.6 Applications of PhCs -- 2.7 Photonic Crystal Fiber -- 2.7.1 Construction -- 2.7.2 Modes of Operation -- 2.7.3 Fabrication of PCF -- 2.7.4 Applications of PCF -- 2.8 Summary -- References -- Chapter 3 Fundamentals of Liquid Crystals -- 3.1 Introduction -- 3.2 Molecular Structure and Chemical Composition of an LC Cell -- 3.3 LC Phases -- 3.3.1 Thermotropic LCs -- 3.3.2 Lyotropic LCs -- 3.3.3 Metallotropic LCs -- 3.4 LC Physical Properties in External Fields -- 3.4.1 Electric Field Effect -- 3.4.2 Magnetic Field Effect -- 3.5 Theortitcal Tratment of LC -- 3.5.1 LC Parameters -- 3.5.2 LC Models -- 3.6 LC Sample Preparation -- 3.7 LCs for Display Applications -- 3.8 LC Thermometers -- 3.9 Optical Imaging.
3.10 LC into Fiber Optics and LC Planar Photonic Crystal -- 3.11 LC Solar Cell -- References -- Part II Numerical Techniques -- Chapter 4 Full-Vectorial Finite-Difference Method -- 4.1 Introduction -- 4.2 Overview of Modeling Methods -- 4.3 Formulation of the FVFDM -- 4.3.1 Maxwell's Equations -- 4.3.2 Wave Equation -- 4.3.3 Boundary Conditions -- 4.3.4 Maxwell's Equations in Complex Coordinate -- 4.3.5 Matrix Solution -- 4.4 Summary -- References -- Chapter 5 Assessment of the Full-Vectorial Finite-Difference Method -- 5.1 Introduction -- 5.2 Overview of the LC-PCF -- 5.3 Soft Glass -- 5.4 Design of Soft Glass PCF with LC Core -- 5.5 Numerical Results -- 5.5.1 FVFDM Validation -- 5.5.2 Modal Hybridness -- 5.5.3 Effective Index -- 5.5.4 Effective Mode Area -- 5.5.5 Nonlinearity -- 5.5.6 Birefringence -- 5.5.7 Effect of the NLC Rotation Angle -- 5.5.8 Effect of the Temperature -- 5.5.9 Elliptical SGLC-PCF -- 5.6 Experimental Results of LC-PCF -- 5.6.1 Filling Temperature -- 5.6.2 Filling Time -- 5.7 Summary -- References -- Chapter 6 Full-Vectorial Beam Propagation Method -- 6.1 Introduction -- 6.2 Overview of the BPMs -- 6.3 Formulation of the FV-BPM -- 6.3.1 Slowly Varying Envelope Approximation -- 6.3.2 Paraxial and Wide-Angle Approximation -- 6.4 Numerical Assessment -- 6.4.1 Overview of Directional Couplers -- 6.4.2 Design of the NLC-PCF Coupler -- 6.4.3 Effect of the Structural Geometrical Parameters -- 6.4.4 Effect of Temperature -- 6.4.5 Effect of the NLC Rotation Angle -- 6.4.6 Elliptical NLC-PCF Coupler -- 6.4.7 Beam Propagation Analysis of the NLC-PCF Coupler -- 6.5 Experimental Results of LC-PCF Coupler -- 6.6 Summary -- References -- Chapter 7 Finite-Difference Time Domain Method -- 7.1 Introduction -- 7.2 Numerical Derivatives -- 7.3 Fundamentals of FDTD -- 7.3.1 1D Problem in Free Space -- 7.3.2 1D Problem in a Lossless Medium.
7.3.3 1D Problem in a Lossy Medium -- 7.3.4 2D Problem -- 7.3.5 3D Problem -- 7.4 Stability for FDTD -- 7.5 Feeding Formulation -- 7.6 Absorbing Boundary Conditions -- 7.6.1 Mur's ABCs -- 7.6.2 Perfect Matched Layer -- 7.7 1D FDTD Sample Code -- 7.7.1 Source Simulation -- 7.7.2 Structure Simulation -- 7.7.3 Propagation Simulation -- 7.8 FDTD Formulation for Anisotropic Materials -- 7.9 Summary -- References -- Part III Applications of LC Devices -- Chapter 8 Polarization Rotator Liquid Crystal Fiber -- 8.1 Introduction -- 8.2 Overview of PRs -- 8.3 Practical Applications of PRs -- 8.4 Operation Principles of PRs -- 8.5 Numerical Simulation Strategy -- 8.6 Design of NLC-PCF PR -- 8.7 Numerical Results -- 8.7.1 Hybridness -- 8.7.2 Operation of the NLC-PCF PR -- 8.7.3 Effect of Structure Geometrical Parameters -- 8.7.4 Tolerance of the NLC Rotation Angle -- 8.7.5 Tolerance of Structure Geometrical Parameters -- 8.7.6 Tolerance of the Temperature -- 8.7.7 Tolerance of the Operating Wavelength -- 8.8 Ultrashort Silica LC-PCF PR -- 8.9 Fabrication Aspects of the NLC-PCF PR -- 8.10 Summary -- References -- Chapter 9 Applications of Nematic Liquid Crystal‐Photonic Crystal Fiber Coupler -- 9.1 Introduction -- 9.2 Multiplexer-Demultiplexer -- 9.2.1 Analysis of NLC-PCF MUX-DEMUX -- 9.2.2 Beam Propagation Study of the NLC-PCF MUX-DEMUX -- 9.2.3 CT of the NLC-PCF MUX-DEMUX -- 9.2.4 Feasibility of the NLC-PCF MUX-DEMUX -- 9.3 Polarization Splitter -- 9.3.1 Analysis of the NLC-PCF Polarization Splitter -- 9.3.2 Beam Propagation Study of the NLC-PCF Polarization Splitter -- 9.3.3 CT of the NLC-PCF Splitter -- 9.3.4 Feasibility of the NLC-PCF Polarization Splitter -- 9.4 Summary -- References -- Chapter 10 Coupling Characteristics of a Photonic Crystal Fiber Coupler with Liquid Crystal Cores -- 10.1 Introduction -- 10.2 Design of the PCF Coupler with LC Cores.
10.3 Numerical Results -- 10.3.1 Effect of the Structural Geometrical Parameters -- 10.3.2 Effect of Temperature -- 10.3.3 Polarization Splitter Based on PCF Coupler with LC Cores -- 10.4 Summary -- References -- Chapter 11 Liquid Crystal Photonic Crystal Fiber Sensors -- 11.1 Introduction -- 11.2 LC-PCF Temperature Sensor -- 11.2.1 Design Consideration -- 11.2.2 Effects of the Structural Geometrical Parameters -- 11.2.3 Effect of the Temperature -- 11.2.4 Effect of the LC Rotation Angle -- 11.2.5 Sensitivity Analysis -- 11.3 Design of Single Core PLC-PCF -- 11.3.1 Design Consideration -- 11.3.2 Effect of the LC Rotation Angle -- 11.3.3 Effect of the Structural Geometrical Parameters -- 11.3.4 Effect of the Temperature -- 11.4 Summary -- References -- Chapter 12 Image Encryption Based on Photonic Liquid Crystal Layers -- 12.1 Introduction to Optical Image Encryption systems -- 12.2 Symmetric Encryption Using PhC Structures -- 12.2.1 Design Concept -- 12.2.2 Encryptor/Decryptor Design -- 12.2.3 Simulation Results -- 12.3 Multiple Encryption System Using Photonic LC Layers -- 12.3.1 Proposed Encryption System -- 12.3.2 Simulation Results -- 12.4 Summary -- References -- Chapter 13 Optical Computing Devices Based on Photonic Liquid Crystal Layers -- 13.1 Introduction to Optical Computing -- 13.2 All-Optical Router Based on Photonic LC Layers -- 13.2.1 Device Architecture -- 13.2.2 Simulation Results -- 13.2.3 Fabrication Tolerance -- 13.3 Optical Logic Gates Based on Photonic LC Layers -- 13.3.1 OR Logic Gate Based on PhC Platform -- 13.3.2 AND Logic Gate Based on a PhC Platform -- 13.3.3 Reconfigurable Gate Based on Photonic NLC Layers -- 13.4 Optical Memory Based on Photonic LC Layers -- 13.4.1 PhC Platform -- 13.4.2 Tunable Switch -- 13.4.3 Simulation Results -- 13.4.4 Fabrication Challenges -- 13.5 Summary -- References -- Index -- EULA.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan Available EBKAF-N00060828
Ebrary Ebrary Algeria Available
Ebrary Ebrary Cyprus Available
Ebrary Ebrary Egypt Available
Ebrary Ebrary Libya Available
Ebrary Ebrary Morocco Available
Ebrary Ebrary Nepal Available EBKNP-N00060828
Ebrary Ebrary Sudan Available
Ebrary Ebrary Tunisia Available
Total holds: 0

Intro -- Title Page -- Copyright Page -- Contents -- Preface -- Part I Basic Principles -- Chapter 1 Principles of Waveguides -- 1.1 Introduction -- 1.2 Basic Optical Waveguides -- 1.3 Maxwell's Equations -- 1.4 The Wave Equation and Its Solutions -- 1.5 Boundary Conditions -- 1.6 Phase and Group Velocity -- 1.6.1 Phase Velocity -- 1.6.2 Group Velocity -- 1.7 Modes in Planar Optical Waveguide -- 1.7.1 Radiation Modes -- 1.7.2 Confinement Modes -- 1.8 Dispersion in Planar Waveguide -- 1.8.1 lntermodal Dispersion -- 1.8.2 lntramodal Dispersion -- 1.9 Summary -- References -- Chapter 2 Fundamentals of Photonic Crystals -- 2.1 Introduction -- 2.2 Types of PhCs -- 2.2.1 1D PhCs -- 2.2.2 2D PhCs -- 2.2.3 3D PhCs -- 2.3 Photonic Band Calculations -- 2.3.1 Maxwell's Equations and the PhC -- 2.3.2 Floquet-Bloch Theorem, Reciprocal Lattice, and Brillouin Zones -- 2.3.3 Plane Wave Expansion Method -- 2.3.4 FDTD Method -- 2.3.5 Photonic Band for Square Lattice -- 2.4 Defects in PhCs -- 2.5 Fabrication Techniques of PhCs -- 2.5.1 Electron-Beam Lithography -- 2.5.2 Interference Lithography -- 2.5.3 Nano-Imprint Lithography -- 2.5.4 Colloidal Self-Assembly -- 2.6 Applications of PhCs -- 2.7 Photonic Crystal Fiber -- 2.7.1 Construction -- 2.7.2 Modes of Operation -- 2.7.3 Fabrication of PCF -- 2.7.4 Applications of PCF -- 2.8 Summary -- References -- Chapter 3 Fundamentals of Liquid Crystals -- 3.1 Introduction -- 3.2 Molecular Structure and Chemical Composition of an LC Cell -- 3.3 LC Phases -- 3.3.1 Thermotropic LCs -- 3.3.2 Lyotropic LCs -- 3.3.3 Metallotropic LCs -- 3.4 LC Physical Properties in External Fields -- 3.4.1 Electric Field Effect -- 3.4.2 Magnetic Field Effect -- 3.5 Theortitcal Tratment of LC -- 3.5.1 LC Parameters -- 3.5.2 LC Models -- 3.6 LC Sample Preparation -- 3.7 LCs for Display Applications -- 3.8 LC Thermometers -- 3.9 Optical Imaging.

3.10 LC into Fiber Optics and LC Planar Photonic Crystal -- 3.11 LC Solar Cell -- References -- Part II Numerical Techniques -- Chapter 4 Full-Vectorial Finite-Difference Method -- 4.1 Introduction -- 4.2 Overview of Modeling Methods -- 4.3 Formulation of the FVFDM -- 4.3.1 Maxwell's Equations -- 4.3.2 Wave Equation -- 4.3.3 Boundary Conditions -- 4.3.4 Maxwell's Equations in Complex Coordinate -- 4.3.5 Matrix Solution -- 4.4 Summary -- References -- Chapter 5 Assessment of the Full-Vectorial Finite-Difference Method -- 5.1 Introduction -- 5.2 Overview of the LC-PCF -- 5.3 Soft Glass -- 5.4 Design of Soft Glass PCF with LC Core -- 5.5 Numerical Results -- 5.5.1 FVFDM Validation -- 5.5.2 Modal Hybridness -- 5.5.3 Effective Index -- 5.5.4 Effective Mode Area -- 5.5.5 Nonlinearity -- 5.5.6 Birefringence -- 5.5.7 Effect of the NLC Rotation Angle -- 5.5.8 Effect of the Temperature -- 5.5.9 Elliptical SGLC-PCF -- 5.6 Experimental Results of LC-PCF -- 5.6.1 Filling Temperature -- 5.6.2 Filling Time -- 5.7 Summary -- References -- Chapter 6 Full-Vectorial Beam Propagation Method -- 6.1 Introduction -- 6.2 Overview of the BPMs -- 6.3 Formulation of the FV-BPM -- 6.3.1 Slowly Varying Envelope Approximation -- 6.3.2 Paraxial and Wide-Angle Approximation -- 6.4 Numerical Assessment -- 6.4.1 Overview of Directional Couplers -- 6.4.2 Design of the NLC-PCF Coupler -- 6.4.3 Effect of the Structural Geometrical Parameters -- 6.4.4 Effect of Temperature -- 6.4.5 Effect of the NLC Rotation Angle -- 6.4.6 Elliptical NLC-PCF Coupler -- 6.4.7 Beam Propagation Analysis of the NLC-PCF Coupler -- 6.5 Experimental Results of LC-PCF Coupler -- 6.6 Summary -- References -- Chapter 7 Finite-Difference Time Domain Method -- 7.1 Introduction -- 7.2 Numerical Derivatives -- 7.3 Fundamentals of FDTD -- 7.3.1 1D Problem in Free Space -- 7.3.2 1D Problem in a Lossless Medium.

7.3.3 1D Problem in a Lossy Medium -- 7.3.4 2D Problem -- 7.3.5 3D Problem -- 7.4 Stability for FDTD -- 7.5 Feeding Formulation -- 7.6 Absorbing Boundary Conditions -- 7.6.1 Mur's ABCs -- 7.6.2 Perfect Matched Layer -- 7.7 1D FDTD Sample Code -- 7.7.1 Source Simulation -- 7.7.2 Structure Simulation -- 7.7.3 Propagation Simulation -- 7.8 FDTD Formulation for Anisotropic Materials -- 7.9 Summary -- References -- Part III Applications of LC Devices -- Chapter 8 Polarization Rotator Liquid Crystal Fiber -- 8.1 Introduction -- 8.2 Overview of PRs -- 8.3 Practical Applications of PRs -- 8.4 Operation Principles of PRs -- 8.5 Numerical Simulation Strategy -- 8.6 Design of NLC-PCF PR -- 8.7 Numerical Results -- 8.7.1 Hybridness -- 8.7.2 Operation of the NLC-PCF PR -- 8.7.3 Effect of Structure Geometrical Parameters -- 8.7.4 Tolerance of the NLC Rotation Angle -- 8.7.5 Tolerance of Structure Geometrical Parameters -- 8.7.6 Tolerance of the Temperature -- 8.7.7 Tolerance of the Operating Wavelength -- 8.8 Ultrashort Silica LC-PCF PR -- 8.9 Fabrication Aspects of the NLC-PCF PR -- 8.10 Summary -- References -- Chapter 9 Applications of Nematic Liquid Crystal‐Photonic Crystal Fiber Coupler -- 9.1 Introduction -- 9.2 Multiplexer-Demultiplexer -- 9.2.1 Analysis of NLC-PCF MUX-DEMUX -- 9.2.2 Beam Propagation Study of the NLC-PCF MUX-DEMUX -- 9.2.3 CT of the NLC-PCF MUX-DEMUX -- 9.2.4 Feasibility of the NLC-PCF MUX-DEMUX -- 9.3 Polarization Splitter -- 9.3.1 Analysis of the NLC-PCF Polarization Splitter -- 9.3.2 Beam Propagation Study of the NLC-PCF Polarization Splitter -- 9.3.3 CT of the NLC-PCF Splitter -- 9.3.4 Feasibility of the NLC-PCF Polarization Splitter -- 9.4 Summary -- References -- Chapter 10 Coupling Characteristics of a Photonic Crystal Fiber Coupler with Liquid Crystal Cores -- 10.1 Introduction -- 10.2 Design of the PCF Coupler with LC Cores.

10.3 Numerical Results -- 10.3.1 Effect of the Structural Geometrical Parameters -- 10.3.2 Effect of Temperature -- 10.3.3 Polarization Splitter Based on PCF Coupler with LC Cores -- 10.4 Summary -- References -- Chapter 11 Liquid Crystal Photonic Crystal Fiber Sensors -- 11.1 Introduction -- 11.2 LC-PCF Temperature Sensor -- 11.2.1 Design Consideration -- 11.2.2 Effects of the Structural Geometrical Parameters -- 11.2.3 Effect of the Temperature -- 11.2.4 Effect of the LC Rotation Angle -- 11.2.5 Sensitivity Analysis -- 11.3 Design of Single Core PLC-PCF -- 11.3.1 Design Consideration -- 11.3.2 Effect of the LC Rotation Angle -- 11.3.3 Effect of the Structural Geometrical Parameters -- 11.3.4 Effect of the Temperature -- 11.4 Summary -- References -- Chapter 12 Image Encryption Based on Photonic Liquid Crystal Layers -- 12.1 Introduction to Optical Image Encryption systems -- 12.2 Symmetric Encryption Using PhC Structures -- 12.2.1 Design Concept -- 12.2.2 Encryptor/Decryptor Design -- 12.2.3 Simulation Results -- 12.3 Multiple Encryption System Using Photonic LC Layers -- 12.3.1 Proposed Encryption System -- 12.3.2 Simulation Results -- 12.4 Summary -- References -- Chapter 13 Optical Computing Devices Based on Photonic Liquid Crystal Layers -- 13.1 Introduction to Optical Computing -- 13.2 All-Optical Router Based on Photonic LC Layers -- 13.2.1 Device Architecture -- 13.2.2 Simulation Results -- 13.2.3 Fabrication Tolerance -- 13.3 Optical Logic Gates Based on Photonic LC Layers -- 13.3.1 OR Logic Gate Based on PhC Platform -- 13.3.2 AND Logic Gate Based on a PhC Platform -- 13.3.3 Reconfigurable Gate Based on Photonic NLC Layers -- 13.4 Optical Memory Based on Photonic LC Layers -- 13.4.1 PhC Platform -- 13.4.2 Tunable Switch -- 13.4.3 Simulation Results -- 13.4.4 Fabrication Challenges -- 13.5 Summary -- References -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.