Bioprocess Sciences and Technology.

By: Liong, Min-TzeSeries: Biochemistry Research TrendsPublisher: Hauppauge : Nova Science Publishers, Incorporated, 2011Copyright date: ©2011Description: 1 online resource (528 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9781619427037Subject(s): Agricultural biotechnology.;BiotechnologyGenre/Form: Electronic books. Additional physical formats: Print version:: Bioprocess Sciences and TechnologyDDC classification: 660.6 LOC classification: TP248.2 -- .B37496 2011ebOnline resources: Click to View
Contents:
Intro -- Library of Congress Cataloging-in-Publication Data -- Contents -- Preface -- Part 1: Bacteria as a Source of Raw Material -- Bacillus Thuringiensis Biopesticides: Key Strains and Toxins, Mass Culture, Formulation Strategies and Improvements -- 1Department of Biological Science, Faculty of Applied Sciences, -- Rajarata University, Sri Lanka -- 2Microbiology Lab, Teaching Hospital, Anuradhapura, Sri Lanka -- 3Rubber Research Institute, Department of Agriculture, Sri Lanka -- 4 Ministry of Health, Sri Lanka -- Abstract -- 1. Introduction -- 2. Diversity of Bacillus Thuringiensis -- 3. Toxins of Bt -- 3.1. α Exotoxin -- 3.2. β Exotoxins -- 3.3. Vips and Vip Related Proteins -- 3.4. Phospholipase C (Lesithinase) -- 3.5. Parasporins -- 3.6. Hemolysins -- 3.7. Diarrheal Type Enterotoxins -- 3.8. δ Endotoxin -- 3.8.1. Mode of Action of the Bt δ Endotoxin -- 3.8.2. The Tertiary Structure of Cry Proteins -- 3.8.3. Classification of Cry Toxins -- 4. Applications of Bacillus Thuringiensis Toxins -- 4.1. Production of Bacillus Thuringiensis Based Biopesticides -- 4.1.1. Culture Media -- 4.1.2. Fermentation Types -- 4.1.3. Type of Bioreactors -- 4.1.4. Factors Affecting the Production Efficiency -- Glucose -- Nitrogen Source -- pH -- 5. Drawbacks of Bacillus Thuringiensis as a Biopesticide -- 5.1. Specificity and Resistance Build up -- 5.2. Survival of Bt in the Environment -- 5.3. Toxicity to Non-Target Animals -- 5.4. Shelf-life of Bt Pesticides -- 6. Formulation Strategies -- 6.1. Challenges for Formulations and Additives as Solutions -- 6.2. Bt Formulation Types -- 6.2.1. Dry Formulations -- 6.2.2. Liquid Formulations -- 6.2.3. Wettable Powders and Water Dispersible Granules -- 7. Genetic Engineering of Bacillus Thuringiensis -- 7.1. Improving the Host Range.
7.2. Producing Strains Carrying Several Cry Toxins with Different Species Specificities -- 7.2.1. Hybrid Toxins -- 7.2.2. Introduction of B. Sphaericus Toxins to Bacillus Thuringiensis -- 7.3. Increasing the Yield of Cry Toxins -- 7.4. Preventing Build up of Resistance -- 7.5. Improving Persistence and Breaking the Niche Barriers -- 8. Protein Engineering -- 9. Future Aspects -- References -- Butanol a Total Substitute for Gasoline from Agricultural Residue -- Department of Agriculture Biology, -- University of Peradeniya, Peradeniya, Sri Lanka -- Abstract -- 1. Introduction -- 2. Butanol -- 3. Fermentation Strains -- a. Rational (Direct) -- b. Random (Combinational) -- 4. Feedstock for Butanol Production -- 5. Limitations and Challenges in Industrial Processing -- 6. Biological Pathways and Determinants -- of Butanol Production -- 7. Butanol Toxicity -- References -- Prospect and Sustainable Production of Polyhydroxyalkanoate from Palm Oil -- Abstract -- 1. Introduction -- 2. Discovery of PHA and Development of Research Interest -- 2.1. Discovery of P(3HB) and other Hydroxyalkanoate (HA) Constituents in the Natural Environmental -- 2.2. Biosynthesis of Various PHA under Controlled Laboratory Conditions -- 2.3. Biodegradability of PHA -- 3. Types of PHA -- 3.1. Short-chain-length PHA (SCL-PHA) -- 3.1.1. Poly(3-hydroxybutyrate) [P(3HB] -- 3.1.2. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV] -- 3.2. Medium-chain-length PHA (MCL-PHA) -- 3.3. Short-chain-length-medium-chain-length PHA (SCL-MCL PHA) -- 4. Biosynthesis and Characterization of Various Types of PHA from Palm Oil Products -- 4.1. P(3HB) -- 4.2. P(3HB-co-3HV) -- 4.3. P(3HB-co-3HHx) -- 4.4. P(3HB-co-3HV-co-3HHx) -- 4.5. MCL-PHA -- 5. Conclusion and Future Outlook -- Acknowledgments -- References -- Part 2. Algae as a Source of Raw Material.
Microalgae as a Feedstock for the Production of Biofuels: Microalgal Biochemistry, Analytical Tools, and Targeted Bioprospecting -- 1Division of Environmental Science and Engineering, Colorado School of Mines, -- 1500 Illinois St., Golden, Colorado 80401, USA -- 2Department of Chemistry and Geochemistry, Colorado School of Mines, -- 1500 Illinois St., Golden, Colorado 80401, USA -- 3National Renewable Energy Laboratory, 1617 Cole Blvd, -- Golden, Colorado 80401, USA -- Abstract -- 1. Introduction -- 2. Microalgal Carbohydrates and Hydrocarbons -- 2.1. Starch Synthesis -- 2.2. Starch Degradation -- 2.3. Terpenes and Terpenoids -- 2.4. Alcohols -- 2.5. Botryococcus Hydrocarbons -- 3. Microalgal Hydrogen Production -- 4. Oleaginous Microalgae -- 4.1. Consideration of Carbon Source in Microalgal Lipid Accumulation -- 4.2. Algal Lipid Biochemistry -- 4.2.1. Fatty Acids -- 4.2.2. Biosynthesis -- Acetyl-CoA Carboxylase (ACCase) -- Malonyl-CoA/ACP Transacylase (MAT) -- ß-ketoacyl-ACP Synthase (KAS) -- 4.2.3. Plastidial Modification -- 4.2.4. TAG Synthesis -- 4.2.5. Fatty Acid Oxidation -- 4.2.7. Localization -- 4.2.8. β-Oxidation -- 4.2.9. Unsaturated Fatty Acid Oxidation -- 4.2.10. Odd-Chain Fatty Acid Oxidation -- 4.3. Algal Lipid Classification -- 4.4. Lipid Chemistry Affects Fuel Properties -- 4.5. Qualitative Lipid Analysis of Microalgae -- 4.6. Semi-Quantitative Lipid Analysis of Microalgae and FACS -- 4.7. Fully Quantitative Lipid Analysis of Microalgae -- 5. Molecular Tools for Algal Feedstock Engineering -- 5.1. Methods for Transformation and Expression -- 5.2. Microalgal Genomes -- 6. Bioenergy-Focused Bioprospecting for Microalgal Diversity -- 6.1. DOE's Former Aquatic Species Program: Establishment of a Microalgal Culture Collection for Biofuels Applications -- 6.2. Establishment of a Bioenergy-Focused Microalgal Strain Collection with FACS.
7. Conclusion -- Acknowledgments -- References -- Algae for the Production of Pharmaceuticals -- 1Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, str. Joliot-Curie, 6, 141980 Dubna, Moscow Region, Russian Federation -- 2Ilya State University, av. Chavchavadze, 32, Tbilisi 0179, Georgia -- 3Andronikashvili Institute of Physics, str. Tamarashvili, 6, Tbilisi 0177, Georgia -- Abstract -- 1. Introduction -- 2. Marine Algae for Pharmaceutical -- 3. Microalgae -- 4. Properties of Some Microalgae Used in Pharmaceuticals -- 4.1. Chlorella -- 4.2. Spirulina -- 4.3. Dunaliella -- 4.4. Haematococcus -- 5. Substantiation of the Method for Making Substances for Pharmaceuticals on the Basis of the Spirulina Platensis Biomass -- 5.1. Formulation of the Problem -- 5.2. Materials and Methods -- 5.3. Results and Discussion -- Selenium -- Chromium -- Iodine -- 6. Conclusion -- References -- Algae: Processes and Applications -- Institute of Plant Physiology, Bulgarian Academy of Sciences, -- Bl. 21, 1113 Sofia, Bulgaria -- Abstract -- Introduction -- Parameters of Algal Productivity -- 2.1. Light -- 2.2. Temperature -- 2.3. Stirring -- 2.4. CO2-Supply -- 2.5. The Algal Suspension -- 2.5.1. Nutrition Medium -- 2.5.2. Nitrogen Starvation -- 2.5.3. Concentration of NaCl -- 2.5.4. Extracellular Substances -- 2.5.5. Bacterial Contamination -- Separation of Biomass -- G = a.g-1 = v2.g-1.r-1, v = 2π.n.r, -- Use of Algae and Algal Products -- 4.1. Algae as Foods, Forage and Pharmaceuticals -- 4.2. Algae as Source of Fuel -- 4.2.1. Hydrocarbons -- 4.2.2. Biogas -- 4.2.3. Bio-hydrogen -- 4.2.4. Biodiesel -- Conclusions -- Acknowledgments -- References -- Algae for the Production of SCP -- Department of Pharmaceutical Biotechnology and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences,.
P.O. Box 71345-1583, Shiraz, Iran -- Abstract -- 1. Introduction -- 2. History -- 3. Classification of the Algae -- 3.1. Cyanobacteria -- 3.2. Green Algae -- 3.2.1. Chlorella -- 3.2.2. Dunaliella -- 3.2.3. Scenedesmus -- 4. Source of Single-Cell Proteins -- 5. Production of SCP -- 6. Microalgae as Human Food or Animal Feed -- 7. Chemical Composition of Microalgal SCP -- 7.1. Protein/Amino Acids Content of Microalgae -- 7.2. Fat, Oil and Hydrocarbon Content of Microalgae -- 7.3. Carbohydrate Content of Microalgae -- 7.4. Vitamin Content of Microalgae -- 8. Analytical Methods -- 8.1. Solution Used for Protein Determination in the Kochert Method -- 9. SCP Safety -- 10. Limitations for Use of SCP -- 11. Conclusion -- References -- Part 3. Yeast as a Source of Raw Material -- Fermenting Microorganisms for 2nd Generation Bioethanol Production -- Abstract -- 1. Introduction -- 2. Second Generation Bioethanol -- 2.1. Simultaneous Saccharification and Fermentation Processes -- 2.1.1. Saccharomyces cerevisiae -- 2.1.2. Zymomonas Mobilis -- 2.1.3. Thermotolerant Yeasts -- 2.1.3.1. Kluyveromyces Marxianus -- 2.2. Simultaneous Saccharification and Co-fermentation Processes -- 2.2.1. Natural Xylose Fermenting Microorganisms -- 2.2.2. Engineered Xylose Fermenting Microorganisms -- 2.2.2.1. Engineered Yeasts -- 2.2.2.2. Engineered Bacteria -- 2.3. Consolidated Bioprocessing (CBP) -- 3. Concluding Remarks -- References -- Single Cell Protein from Yeast -- School of Engineering and Information Technology, -- Universiti Malaysia Sabah, Kota Kinabalu -- Abstract -- 1. Introduction -- 2. Fundamental of Yeast -- 3. Yeast as SCP -- 4. Resources for Production of Yeast-based SCP -- 5. Toxicity and Safety -- 6. Technologies in Production of Yeast-based SCP -- 6.1. Production of SCP -- 6.2. Optimal Parameters for SCP Production -- 6.3. Growth Kinetics.
6.4. Process Design and Control.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan
Available EBKAF-N00013966
Ebrary Ebrary Algeria
Available
Ebrary Ebrary Cyprus
Available
Ebrary Ebrary Egypt
Available
Ebrary Ebrary Libya
Available
Ebrary Ebrary Morocco
Available
Ebrary Ebrary Nepal
Available EBKNP-N00013966
Ebrary Ebrary Sudan

Access a wide range of magazines and books using Pressreader and Ebook central.

Enjoy your reading, British Council Sudan.

Available
Ebrary Ebrary Tunisia
Available
Total holds: 0

Intro -- Library of Congress Cataloging-in-Publication Data -- Contents -- Preface -- Part 1: Bacteria as a Source of Raw Material -- Bacillus Thuringiensis Biopesticides: Key Strains and Toxins, Mass Culture, Formulation Strategies and Improvements -- 1Department of Biological Science, Faculty of Applied Sciences, -- Rajarata University, Sri Lanka -- 2Microbiology Lab, Teaching Hospital, Anuradhapura, Sri Lanka -- 3Rubber Research Institute, Department of Agriculture, Sri Lanka -- 4 Ministry of Health, Sri Lanka -- Abstract -- 1. Introduction -- 2. Diversity of Bacillus Thuringiensis -- 3. Toxins of Bt -- 3.1. α Exotoxin -- 3.2. β Exotoxins -- 3.3. Vips and Vip Related Proteins -- 3.4. Phospholipase C (Lesithinase) -- 3.5. Parasporins -- 3.6. Hemolysins -- 3.7. Diarrheal Type Enterotoxins -- 3.8. δ Endotoxin -- 3.8.1. Mode of Action of the Bt δ Endotoxin -- 3.8.2. The Tertiary Structure of Cry Proteins -- 3.8.3. Classification of Cry Toxins -- 4. Applications of Bacillus Thuringiensis Toxins -- 4.1. Production of Bacillus Thuringiensis Based Biopesticides -- 4.1.1. Culture Media -- 4.1.2. Fermentation Types -- 4.1.3. Type of Bioreactors -- 4.1.4. Factors Affecting the Production Efficiency -- Glucose -- Nitrogen Source -- pH -- 5. Drawbacks of Bacillus Thuringiensis as a Biopesticide -- 5.1. Specificity and Resistance Build up -- 5.2. Survival of Bt in the Environment -- 5.3. Toxicity to Non-Target Animals -- 5.4. Shelf-life of Bt Pesticides -- 6. Formulation Strategies -- 6.1. Challenges for Formulations and Additives as Solutions -- 6.2. Bt Formulation Types -- 6.2.1. Dry Formulations -- 6.2.2. Liquid Formulations -- 6.2.3. Wettable Powders and Water Dispersible Granules -- 7. Genetic Engineering of Bacillus Thuringiensis -- 7.1. Improving the Host Range.

7.2. Producing Strains Carrying Several Cry Toxins with Different Species Specificities -- 7.2.1. Hybrid Toxins -- 7.2.2. Introduction of B. Sphaericus Toxins to Bacillus Thuringiensis -- 7.3. Increasing the Yield of Cry Toxins -- 7.4. Preventing Build up of Resistance -- 7.5. Improving Persistence and Breaking the Niche Barriers -- 8. Protein Engineering -- 9. Future Aspects -- References -- Butanol a Total Substitute for Gasoline from Agricultural Residue -- Department of Agriculture Biology, -- University of Peradeniya, Peradeniya, Sri Lanka -- Abstract -- 1. Introduction -- 2. Butanol -- 3. Fermentation Strains -- a. Rational (Direct) -- b. Random (Combinational) -- 4. Feedstock for Butanol Production -- 5. Limitations and Challenges in Industrial Processing -- 6. Biological Pathways and Determinants -- of Butanol Production -- 7. Butanol Toxicity -- References -- Prospect and Sustainable Production of Polyhydroxyalkanoate from Palm Oil -- Abstract -- 1. Introduction -- 2. Discovery of PHA and Development of Research Interest -- 2.1. Discovery of P(3HB) and other Hydroxyalkanoate (HA) Constituents in the Natural Environmental -- 2.2. Biosynthesis of Various PHA under Controlled Laboratory Conditions -- 2.3. Biodegradability of PHA -- 3. Types of PHA -- 3.1. Short-chain-length PHA (SCL-PHA) -- 3.1.1. Poly(3-hydroxybutyrate) [P(3HB] -- 3.1.2. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV] -- 3.2. Medium-chain-length PHA (MCL-PHA) -- 3.3. Short-chain-length-medium-chain-length PHA (SCL-MCL PHA) -- 4. Biosynthesis and Characterization of Various Types of PHA from Palm Oil Products -- 4.1. P(3HB) -- 4.2. P(3HB-co-3HV) -- 4.3. P(3HB-co-3HHx) -- 4.4. P(3HB-co-3HV-co-3HHx) -- 4.5. MCL-PHA -- 5. Conclusion and Future Outlook -- Acknowledgments -- References -- Part 2. Algae as a Source of Raw Material.

Microalgae as a Feedstock for the Production of Biofuels: Microalgal Biochemistry, Analytical Tools, and Targeted Bioprospecting -- 1Division of Environmental Science and Engineering, Colorado School of Mines, -- 1500 Illinois St., Golden, Colorado 80401, USA -- 2Department of Chemistry and Geochemistry, Colorado School of Mines, -- 1500 Illinois St., Golden, Colorado 80401, USA -- 3National Renewable Energy Laboratory, 1617 Cole Blvd, -- Golden, Colorado 80401, USA -- Abstract -- 1. Introduction -- 2. Microalgal Carbohydrates and Hydrocarbons -- 2.1. Starch Synthesis -- 2.2. Starch Degradation -- 2.3. Terpenes and Terpenoids -- 2.4. Alcohols -- 2.5. Botryococcus Hydrocarbons -- 3. Microalgal Hydrogen Production -- 4. Oleaginous Microalgae -- 4.1. Consideration of Carbon Source in Microalgal Lipid Accumulation -- 4.2. Algal Lipid Biochemistry -- 4.2.1. Fatty Acids -- 4.2.2. Biosynthesis -- Acetyl-CoA Carboxylase (ACCase) -- Malonyl-CoA/ACP Transacylase (MAT) -- ß-ketoacyl-ACP Synthase (KAS) -- 4.2.3. Plastidial Modification -- 4.2.4. TAG Synthesis -- 4.2.5. Fatty Acid Oxidation -- 4.2.7. Localization -- 4.2.8. β-Oxidation -- 4.2.9. Unsaturated Fatty Acid Oxidation -- 4.2.10. Odd-Chain Fatty Acid Oxidation -- 4.3. Algal Lipid Classification -- 4.4. Lipid Chemistry Affects Fuel Properties -- 4.5. Qualitative Lipid Analysis of Microalgae -- 4.6. Semi-Quantitative Lipid Analysis of Microalgae and FACS -- 4.7. Fully Quantitative Lipid Analysis of Microalgae -- 5. Molecular Tools for Algal Feedstock Engineering -- 5.1. Methods for Transformation and Expression -- 5.2. Microalgal Genomes -- 6. Bioenergy-Focused Bioprospecting for Microalgal Diversity -- 6.1. DOE's Former Aquatic Species Program: Establishment of a Microalgal Culture Collection for Biofuels Applications -- 6.2. Establishment of a Bioenergy-Focused Microalgal Strain Collection with FACS.

7. Conclusion -- Acknowledgments -- References -- Algae for the Production of Pharmaceuticals -- 1Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, str. Joliot-Curie, 6, 141980 Dubna, Moscow Region, Russian Federation -- 2Ilya State University, av. Chavchavadze, 32, Tbilisi 0179, Georgia -- 3Andronikashvili Institute of Physics, str. Tamarashvili, 6, Tbilisi 0177, Georgia -- Abstract -- 1. Introduction -- 2. Marine Algae for Pharmaceutical -- 3. Microalgae -- 4. Properties of Some Microalgae Used in Pharmaceuticals -- 4.1. Chlorella -- 4.2. Spirulina -- 4.3. Dunaliella -- 4.4. Haematococcus -- 5. Substantiation of the Method for Making Substances for Pharmaceuticals on the Basis of the Spirulina Platensis Biomass -- 5.1. Formulation of the Problem -- 5.2. Materials and Methods -- 5.3. Results and Discussion -- Selenium -- Chromium -- Iodine -- 6. Conclusion -- References -- Algae: Processes and Applications -- Institute of Plant Physiology, Bulgarian Academy of Sciences, -- Bl. 21, 1113 Sofia, Bulgaria -- Abstract -- Introduction -- Parameters of Algal Productivity -- 2.1. Light -- 2.2. Temperature -- 2.3. Stirring -- 2.4. CO2-Supply -- 2.5. The Algal Suspension -- 2.5.1. Nutrition Medium -- 2.5.2. Nitrogen Starvation -- 2.5.3. Concentration of NaCl -- 2.5.4. Extracellular Substances -- 2.5.5. Bacterial Contamination -- Separation of Biomass -- G = a.g-1 = v2.g-1.r-1, v = 2π.n.r, -- Use of Algae and Algal Products -- 4.1. Algae as Foods, Forage and Pharmaceuticals -- 4.2. Algae as Source of Fuel -- 4.2.1. Hydrocarbons -- 4.2.2. Biogas -- 4.2.3. Bio-hydrogen -- 4.2.4. Biodiesel -- Conclusions -- Acknowledgments -- References -- Algae for the Production of SCP -- Department of Pharmaceutical Biotechnology and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences,.

P.O. Box 71345-1583, Shiraz, Iran -- Abstract -- 1. Introduction -- 2. History -- 3. Classification of the Algae -- 3.1. Cyanobacteria -- 3.2. Green Algae -- 3.2.1. Chlorella -- 3.2.2. Dunaliella -- 3.2.3. Scenedesmus -- 4. Source of Single-Cell Proteins -- 5. Production of SCP -- 6. Microalgae as Human Food or Animal Feed -- 7. Chemical Composition of Microalgal SCP -- 7.1. Protein/Amino Acids Content of Microalgae -- 7.2. Fat, Oil and Hydrocarbon Content of Microalgae -- 7.3. Carbohydrate Content of Microalgae -- 7.4. Vitamin Content of Microalgae -- 8. Analytical Methods -- 8.1. Solution Used for Protein Determination in the Kochert Method -- 9. SCP Safety -- 10. Limitations for Use of SCP -- 11. Conclusion -- References -- Part 3. Yeast as a Source of Raw Material -- Fermenting Microorganisms for 2nd Generation Bioethanol Production -- Abstract -- 1. Introduction -- 2. Second Generation Bioethanol -- 2.1. Simultaneous Saccharification and Fermentation Processes -- 2.1.1. Saccharomyces cerevisiae -- 2.1.2. Zymomonas Mobilis -- 2.1.3. Thermotolerant Yeasts -- 2.1.3.1. Kluyveromyces Marxianus -- 2.2. Simultaneous Saccharification and Co-fermentation Processes -- 2.2.1. Natural Xylose Fermenting Microorganisms -- 2.2.2. Engineered Xylose Fermenting Microorganisms -- 2.2.2.1. Engineered Yeasts -- 2.2.2.2. Engineered Bacteria -- 2.3. Consolidated Bioprocessing (CBP) -- 3. Concluding Remarks -- References -- Single Cell Protein from Yeast -- School of Engineering and Information Technology, -- Universiti Malaysia Sabah, Kota Kinabalu -- Abstract -- 1. Introduction -- 2. Fundamental of Yeast -- 3. Yeast as SCP -- 4. Resources for Production of Yeast-based SCP -- 5. Toxicity and Safety -- 6. Technologies in Production of Yeast-based SCP -- 6.1. Production of SCP -- 6.2. Optimal Parameters for SCP Production -- 6.3. Growth Kinetics.

6.4. Process Design and Control.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.