Amazon cover image
Image from Amazon.com

Microsystems for Bioelectronics : Micro and Nano-Scale Biological Systems for Information Processing.

By: Contributor(s): Series: Micro and Nano Technologies SerPublisher: Norwich : Elsevier Science & Technology Books, 2015Copyright date: ©2015Edition: 2nd edDescription: 1 online resource (298 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780323312691
Subject(s): Genre/Form: Additional physical formats: Print version:: Microsystems for Bioelectronics : Micro and Nano-Scale Biological Systems for Information ProcessingDDC classification:
  • 610.28
LOC classification:
  • R857.N34
Online resources:
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface-Second Edition -- Chapter 1 - The nanomorphic cell: atomic-level limits of computing -- List of Acronyms -- 1.1 - Introduction -- 1.2 - Electronic Scaling -- 1.3 - Nanomorphic Cell: Atomic Level Limits of Computing -- 1.4 - The Nanomorphic Cell vis-à-vis the Living Cell -- 1.5 - Cell Parameters: Mass, Size, and Energy -- 1.6 - Current Status of Technologies for Autonomous Microsystems -- 1.6.1 - Implantable and Ingestible Medical Devices -- 1.6.2 - Intelligent Integrated Sensor Systems -- 1.7 - Summary -- 1.8 - Appendix -- References -- Chapter 2 - Basic physics of ICT -- List of Acronyms -- 2.1 - Introduction -- 2.2 - A central concept: Energy barrier -- 2.3 - Physical origin of the barrier potential in materials systems -- 2.4 - Two-sided barrier -- 2.4.1 - Example: Electromechanical switch -- 2.5 - Model Case: An Electrical Capacitor -- 2.6 - Barrier transitions -- 2.7 - Quantum Confinement -- 2.8 - Quantum conductance -- 2.9 - Electron transport in the presence of barriers -- 2.9.1 - Over-barrier transport -- 2.9.2 - Tunneling transport -- 2.10 - Barriers in semiconductors -- 2.10.1 - Metal-semiconductor interfaces -- 2.10.2 - pn-junction -- 2.11 - Summary -- References -- Chapter 3 - Energy in the small: micro-scale energy sources -- List of Acronyms -- 3.1 - Introduction -- 3.2 - Storage Capacitor -- 3.2.1 - Example: Maximum energy stored in a capacitor -- 3.3 - Electrochemical Energy: Fundamentals of Galvanic Cells -- 3.3.1 - Energy Stored in the Galvanic Cell -- 3.3.2 - Power Delivery by a Galvanic Cell -- 3.3.3 - Current Status of Miniature Galvanic Cells -- 3.3.4 - Miniature Biofuel Cells -- 3.3.5 - Remarks on Biocompatibility -- 3.4 - Miniature Supercapacitors -- Miniature supercapacitors: Status and potential directions -- 3.5 - Energy from Radioisotopes.
3.5.1 - Radioisotope Energy Sources -- 3.5.2 - Radioisotopic Energy Conversion -- 3.5.3 - Practical Miniature Radioisotope Energy Sources -- 3.6 - Remarks on Energy Harvesting -- 3.6.1 - Photovoltaics -- 3.6.2 - Radio Frequency (RF)/Microwave Energy Harvesting -- 3.6.3 - Kinetic Energy Harvesting -- 3.6.4 - Thermal Energy Harvesting -- 3.7 - Summary -- 3.8 - Appendix. A kinetic model to assess the limits of heat removal -- References -- Chapter 4 - Fundamental limits for logic and memory -- List of Acronyms -- 4.1 - Introduction -- 4.2 - Information and Information Processing -- 4.3 - Basic Physics of Binary Elements -- 4.3.1 - Distinguishable States -- 4.3.2 - Energy Barrier Framework for the Operating Limits of Binary Switches -- A. Limits on barrier height -- B. Limits on Size -- C. Limits on Speed -- D. Combined Effect of Classic and Quantum Errors -- 4.3.3 - A summary of device scaling limits -- 4.3.4 - Charge-based Binary Logic Switch -- 4.3.5 - Charge-based Memory Element -- DRAM -- SRAM -- Floating gate/flash memory -- 4.4 - System-level Analysis -- 4.4.1 - Tiling Considerations: Device density -- 3D Tiling of Flash Memory -- 4.4.2 - Energy adjustment for system reliability -- 4.4.3 - Models for Connected Binary Switches -- A. Juxtaposed Switches -- B. Connecting Binary Switches via Wires: Extended Well Model -- 4.4.4 - Fan-out costs -- 4.4.5 - Energy per tile -- 4.4.6 - Logic circuit energetics and speed -- 4.4.7 - Memory array energetics -- 4.4.8 - Implications for Nanomorphic Cell: Numerical Estimates of Energy per Bit Operation -- A. Large-scale chip: 2D system with size ∼1 cm -- B. Small-scale chip: 2D system with size ∼10 mm -- C. Minimal Computing Engine with size 1-10 mm -- 4.4.9 - Device Opportunities for Beyond the Planar Electronic FET: A Nanomorphic Cell Perspective -- A. Opportunities in 3D systems.
B. Small-scale chip: 3D system with size ∼10 mm -- C. Devices utilizing information carriers other than electron charge -- 4.5 - Summary -- 4.6 - Appendix. Derivation of electron travel time -- References -- Chapter 5 - A severely scaled information processor -- List of Acronyms -- 5.1 - Introduction -- 5.2 - Information: A quantitative treatment -- 5.2.1 - An intuitive introduction to information theory -- 5.2.2 - Units of information -- Thermodynamic units -- 5.2.3 - Optimum base for computation -- 5.2.4 - General case: Non-uniform probability of occurrence of information events -- 5.2.5 - Information content of material systems -- 5.3 - Abstract information processor -- 5.3.1 - Turing machine and von Neumann universal automatIon -- 5.3.2 - A minimum one-bit Arithmetic Logic Unit -- 5.3.3 - Complexity of the building blocks for the MTM -- Elementary Gates -- The Arithmetic Logic Unit -- MTM: device count and operation -- 5.3.4 - A full microscale computer -- 5.4 - Concluding Remarks -- 5.5 - Appendix: Choice of probability values to maximize the entropy function -- References -- Chapter 6 - Sensors at the micro-scale -- List of Acronyms -- 6.1 - Introduction -- 6.2 - Sensor Basics -- 6.3 - Analog Signal -- 6.4 - Fundamental Sensitivity Limit of Sensors: Thermal Noise -- 6.5 - What information can be obtained from Cells? -- 6.6 - Sensors of Bioelectricity -- 6.7 - Chemical and Biochemical Sensors -- 6.7.1 - Planar ISFET Sensors -- 6.7.2 - One-dimensional Nanostructures for Biosensing -- 6.8 - Thermal Biosensors -- 6.8.1 - Basic Principles -- 6.8.2 - FET-type Thermal Sensors -- 6.8.3 - Thermoelectric sensors -- 6.8.4 - Remarks on the state of the art of nanoscale biothermal analysis -- 6.9 - Optical Biosensors -- 6.10 - Summary -- 6.11 - Glossary of Biological Terms -- References -- Chapter 7 - Nanomorphic cell communication unit -- List of Acronyms.
7.1 - Introduction -- 7.2 - EM Radiation -- 7.3 - Basic RF Communication System -- 7.4 - EM Transducer: A Linear Antenna -- 7.4.1 - Basic Principles -- 7.4.2 - Short Antennas -- 7.4.3 - Radiation Efficiency -- 7.5 - Free-Space Single-Photon Limit for Energy in EM Communication -- 7.6 - Thermal Noise Limit on Communication Spectrum -- 7.6.1 - Thermal Background Radiation -- 7.6.2 - Minimum Detectable Energy -- 7.7 - The THz Communication Option (l   100 mm) -- 7.8 - Wireless Communication for Biomedical Applications -- 7.9 - Optical Wavelength Communication Option (l 1 mm) -- 7.9.1 - Basic Principles of Generation and Detection of Optical Radiation -- 7.9.2 - Scaling Limits of Optoelectronic Devices -- 7.10 - Status of m-scaled LEDs and PDs -- 7.11 - Summary -- List of Symbols -- References -- Chapter 8 - Micron-sized systems: in carbo vs. in silico -- List of Acronyms -- 8.1 - Introduction -- 8.2 - The Living Cell as a Turing Machine -- 8.3 - The nanomorphic (in silico) cell -- 8.4 - The living (in carbo) cell -- 8.4.1 - E. coli Properties -- 8.4.2 - DNA Memory -- DNA memory density -- Speed and energetics of DNA memory operations -- 8.4.3 - Biologic: digital and analog circuits with proteins -- 8.4.4 - In carbo sensors -- 8.4.5 - In Carbo Communication -- Chemical-to-cell communication -- Energy costs of chemical communication -- Communication distance -- Optical signaling/communication -- Direct contact communication -- 8.4.6 - In carbo energy source -- 8.5 - Benchmarks: in carbo versus in silico processors -- 8.6 - Operational characteristics of a 10-mm ICT system -- 8.7 - Design secrets of an in carbo system -- 8.8 - ICT and Biology: Opportunities for synergy -- DNA-inspired memory and storage technologies -- Cytomorphic Electronics -- 8.9 - Summary -- References -- Concluding Remarks -- Index.
Summary: The advances in microsystems offer new opportunities and capabilities to develop systems for biomedical applications, such as diagnostics and therapy. There is a need for a comprehensive treatment of microsystems and in particular for an understanding of performance limits associated with the shrinking scale of microsystems. The new edition of Microsystems for Bioelectronics addresses those needs and represents a major revision, expansion and advancement of the previous edition. This book considers physical principles and trends in extremely scaled autonomous microsystems such as integrated intelligent sensor systems, with a focus on energy minimization. It explores the implications of energy minimization on device and system architecture. It further details behavior of electronic components and its implications on system-level scaling and performance limits. In particular, fundamental scaling limits for energy sourcing, sensing, memory, computation and communication subsystems are developed and new applications such as optical, magnetic and mechanical sensors are presented. The new edition of this well-proven book with its unique focus and interdisciplinary approach shows the complexities of the next generation of nanoelectronic microsystems in a simple and illuminating view, and is aimed for a broad audience within the engineering and biomedical community.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan Available EBKAF-N0004120
Ebrary Ebrary Algeria Available
Ebrary Ebrary Cyprus Available
Ebrary Ebrary Egypt Available
Ebrary Ebrary Libya Available
Ebrary Ebrary Morocco Available
Ebrary Ebrary Nepal Available EBKNP-N0004120
Ebrary Ebrary Sudan Available
Ebrary Ebrary Tunisia Available
Total holds: 0

Cover -- Title Page -- Copyright Page -- Contents -- Preface-Second Edition -- Chapter 1 - The nanomorphic cell: atomic-level limits of computing -- List of Acronyms -- 1.1 - Introduction -- 1.2 - Electronic Scaling -- 1.3 - Nanomorphic Cell: Atomic Level Limits of Computing -- 1.4 - The Nanomorphic Cell vis-à-vis the Living Cell -- 1.5 - Cell Parameters: Mass, Size, and Energy -- 1.6 - Current Status of Technologies for Autonomous Microsystems -- 1.6.1 - Implantable and Ingestible Medical Devices -- 1.6.2 - Intelligent Integrated Sensor Systems -- 1.7 - Summary -- 1.8 - Appendix -- References -- Chapter 2 - Basic physics of ICT -- List of Acronyms -- 2.1 - Introduction -- 2.2 - A central concept: Energy barrier -- 2.3 - Physical origin of the barrier potential in materials systems -- 2.4 - Two-sided barrier -- 2.4.1 - Example: Electromechanical switch -- 2.5 - Model Case: An Electrical Capacitor -- 2.6 - Barrier transitions -- 2.7 - Quantum Confinement -- 2.8 - Quantum conductance -- 2.9 - Electron transport in the presence of barriers -- 2.9.1 - Over-barrier transport -- 2.9.2 - Tunneling transport -- 2.10 - Barriers in semiconductors -- 2.10.1 - Metal-semiconductor interfaces -- 2.10.2 - pn-junction -- 2.11 - Summary -- References -- Chapter 3 - Energy in the small: micro-scale energy sources -- List of Acronyms -- 3.1 - Introduction -- 3.2 - Storage Capacitor -- 3.2.1 - Example: Maximum energy stored in a capacitor -- 3.3 - Electrochemical Energy: Fundamentals of Galvanic Cells -- 3.3.1 - Energy Stored in the Galvanic Cell -- 3.3.2 - Power Delivery by a Galvanic Cell -- 3.3.3 - Current Status of Miniature Galvanic Cells -- 3.3.4 - Miniature Biofuel Cells -- 3.3.5 - Remarks on Biocompatibility -- 3.4 - Miniature Supercapacitors -- Miniature supercapacitors: Status and potential directions -- 3.5 - Energy from Radioisotopes.

3.5.1 - Radioisotope Energy Sources -- 3.5.2 - Radioisotopic Energy Conversion -- 3.5.3 - Practical Miniature Radioisotope Energy Sources -- 3.6 - Remarks on Energy Harvesting -- 3.6.1 - Photovoltaics -- 3.6.2 - Radio Frequency (RF)/Microwave Energy Harvesting -- 3.6.3 - Kinetic Energy Harvesting -- 3.6.4 - Thermal Energy Harvesting -- 3.7 - Summary -- 3.8 - Appendix. A kinetic model to assess the limits of heat removal -- References -- Chapter 4 - Fundamental limits for logic and memory -- List of Acronyms -- 4.1 - Introduction -- 4.2 - Information and Information Processing -- 4.3 - Basic Physics of Binary Elements -- 4.3.1 - Distinguishable States -- 4.3.2 - Energy Barrier Framework for the Operating Limits of Binary Switches -- A. Limits on barrier height -- B. Limits on Size -- C. Limits on Speed -- D. Combined Effect of Classic and Quantum Errors -- 4.3.3 - A summary of device scaling limits -- 4.3.4 - Charge-based Binary Logic Switch -- 4.3.5 - Charge-based Memory Element -- DRAM -- SRAM -- Floating gate/flash memory -- 4.4 - System-level Analysis -- 4.4.1 - Tiling Considerations: Device density -- 3D Tiling of Flash Memory -- 4.4.2 - Energy adjustment for system reliability -- 4.4.3 - Models for Connected Binary Switches -- A. Juxtaposed Switches -- B. Connecting Binary Switches via Wires: Extended Well Model -- 4.4.4 - Fan-out costs -- 4.4.5 - Energy per tile -- 4.4.6 - Logic circuit energetics and speed -- 4.4.7 - Memory array energetics -- 4.4.8 - Implications for Nanomorphic Cell: Numerical Estimates of Energy per Bit Operation -- A. Large-scale chip: 2D system with size ∼1 cm -- B. Small-scale chip: 2D system with size ∼10 mm -- C. Minimal Computing Engine with size 1-10 mm -- 4.4.9 - Device Opportunities for Beyond the Planar Electronic FET: A Nanomorphic Cell Perspective -- A. Opportunities in 3D systems.

B. Small-scale chip: 3D system with size ∼10 mm -- C. Devices utilizing information carriers other than electron charge -- 4.5 - Summary -- 4.6 - Appendix. Derivation of electron travel time -- References -- Chapter 5 - A severely scaled information processor -- List of Acronyms -- 5.1 - Introduction -- 5.2 - Information: A quantitative treatment -- 5.2.1 - An intuitive introduction to information theory -- 5.2.2 - Units of information -- Thermodynamic units -- 5.2.3 - Optimum base for computation -- 5.2.4 - General case: Non-uniform probability of occurrence of information events -- 5.2.5 - Information content of material systems -- 5.3 - Abstract information processor -- 5.3.1 - Turing machine and von Neumann universal automatIon -- 5.3.2 - A minimum one-bit Arithmetic Logic Unit -- 5.3.3 - Complexity of the building blocks for the MTM -- Elementary Gates -- The Arithmetic Logic Unit -- MTM: device count and operation -- 5.3.4 - A full microscale computer -- 5.4 - Concluding Remarks -- 5.5 - Appendix: Choice of probability values to maximize the entropy function -- References -- Chapter 6 - Sensors at the micro-scale -- List of Acronyms -- 6.1 - Introduction -- 6.2 - Sensor Basics -- 6.3 - Analog Signal -- 6.4 - Fundamental Sensitivity Limit of Sensors: Thermal Noise -- 6.5 - What information can be obtained from Cells? -- 6.6 - Sensors of Bioelectricity -- 6.7 - Chemical and Biochemical Sensors -- 6.7.1 - Planar ISFET Sensors -- 6.7.2 - One-dimensional Nanostructures for Biosensing -- 6.8 - Thermal Biosensors -- 6.8.1 - Basic Principles -- 6.8.2 - FET-type Thermal Sensors -- 6.8.3 - Thermoelectric sensors -- 6.8.4 - Remarks on the state of the art of nanoscale biothermal analysis -- 6.9 - Optical Biosensors -- 6.10 - Summary -- 6.11 - Glossary of Biological Terms -- References -- Chapter 7 - Nanomorphic cell communication unit -- List of Acronyms.

7.1 - Introduction -- 7.2 - EM Radiation -- 7.3 - Basic RF Communication System -- 7.4 - EM Transducer: A Linear Antenna -- 7.4.1 - Basic Principles -- 7.4.2 - Short Antennas -- 7.4.3 - Radiation Efficiency -- 7.5 - Free-Space Single-Photon Limit for Energy in EM Communication -- 7.6 - Thermal Noise Limit on Communication Spectrum -- 7.6.1 - Thermal Background Radiation -- 7.6.2 - Minimum Detectable Energy -- 7.7 - The THz Communication Option (l   100 mm) -- 7.8 - Wireless Communication for Biomedical Applications -- 7.9 - Optical Wavelength Communication Option (l 1 mm) -- 7.9.1 - Basic Principles of Generation and Detection of Optical Radiation -- 7.9.2 - Scaling Limits of Optoelectronic Devices -- 7.10 - Status of m-scaled LEDs and PDs -- 7.11 - Summary -- List of Symbols -- References -- Chapter 8 - Micron-sized systems: in carbo vs. in silico -- List of Acronyms -- 8.1 - Introduction -- 8.2 - The Living Cell as a Turing Machine -- 8.3 - The nanomorphic (in silico) cell -- 8.4 - The living (in carbo) cell -- 8.4.1 - E. coli Properties -- 8.4.2 - DNA Memory -- DNA memory density -- Speed and energetics of DNA memory operations -- 8.4.3 - Biologic: digital and analog circuits with proteins -- 8.4.4 - In carbo sensors -- 8.4.5 - In Carbo Communication -- Chemical-to-cell communication -- Energy costs of chemical communication -- Communication distance -- Optical signaling/communication -- Direct contact communication -- 8.4.6 - In carbo energy source -- 8.5 - Benchmarks: in carbo versus in silico processors -- 8.6 - Operational characteristics of a 10-mm ICT system -- 8.7 - Design secrets of an in carbo system -- 8.8 - ICT and Biology: Opportunities for synergy -- DNA-inspired memory and storage technologies -- Cytomorphic Electronics -- 8.9 - Summary -- References -- Concluding Remarks -- Index.

The advances in microsystems offer new opportunities and capabilities to develop systems for biomedical applications, such as diagnostics and therapy. There is a need for a comprehensive treatment of microsystems and in particular for an understanding of performance limits associated with the shrinking scale of microsystems. The new edition of Microsystems for Bioelectronics addresses those needs and represents a major revision, expansion and advancement of the previous edition. This book considers physical principles and trends in extremely scaled autonomous microsystems such as integrated intelligent sensor systems, with a focus on energy minimization. It explores the implications of energy minimization on device and system architecture. It further details behavior of electronic components and its implications on system-level scaling and performance limits. In particular, fundamental scaling limits for energy sourcing, sensing, memory, computation and communication subsystems are developed and new applications such as optical, magnetic and mechanical sensors are presented. The new edition of this well-proven book with its unique focus and interdisciplinary approach shows the complexities of the next generation of nanoelectronic microsystems in a simple and illuminating view, and is aimed for a broad audience within the engineering and biomedical community.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.