NOx Related Chemistry.

By: van Eldik, RudiContributor(s): Olabe, José A | Olabe, José ASeries: Issn SerPublisher: Saint Louis : Elsevier Science & Technology, 2015Copyright date: ©2015Description: 1 online resource (388 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9780128018378Subject(s): Nitrogen oxides.;Chemistry, InorganicGenre/Form: Electronic books. Additional physical formats: Print version:: NOx Related ChemistryDDC classification: 546 LOC classification: QD305.N8 -- .A383 2015ebOnline resources: Click to View
Contents:
Front Cover -- NOx Related Chemistry -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: NOx Linkage Isomerization in Metal Complexes -- 1. Introduction -- 1.1. Modes of binding of NOx moieties in monometallic complexes -- 1.1.1. Nitric oxide complexes -- 1.1.2. NO2 complexes -- 1.1.3. NO3 complexes -- 1.2. Methods that induce linkage isomerization -- 1.3. Techniques for detecting linkage isomers -- 1.4. Factors that affect linkage isomerization -- 2. Linkage Isomerism in Non-Porphyrin NOx Complexes -- 2.1. Group 6 (Cr and Mo) complexes -- 2.1.1. NO complexes -- 2.1.2. NO2 complexes -- 2.2. Group 7 (Mn and Re) complexes -- 2.2.1. NO complexes -- 2.3. Group 8 (Fe, Ru, and Os) complexes -- 2.3.1. NO complexes -- 2.3.2. NO2 complexes -- 2.3.3. NO3 complexes -- 2.4. Group 9 (Co, Rh, and Ir) complexes -- 2.4.1. NO complexes -- 2.4.2. NO2 complexes -- 2.5. Group 10 (Ni, Pd, and Pt) complexes -- 2.5.1. NO complexes -- 2.5.2. NO2 complexes -- 3. Linkage Isomerism in NOx-Coordinated Metalloporphyrins -- 3.1. Manganese NOx porphyrins -- 3.2. Ruthenium and iron NOx porphyrin complexes -- 3.3. Cobalt NOx porphyrins -- 3.4. Hyponitrite complexes of transition metal porphyrins -- 3.4.1. The nitric oxide dimer and its reduced forms -- 3.4.2. Metal hyponitrite binding modes -- 3.5. Heme proteins -- 4. Conclusion -- Acknowledgment -- References -- Chapter Two: Three Redox States of Metallonitrosyls in Aqueous Solution -- 1. Introduction: General Scope -- 2. Complexes with n=6 -- 2.1. Structure, spectroscopy, and electronic description. Total spin S=0. Dominant M-NO+ distribution -- 2.1.1. Significance and importance of the ``back-bonding model´´ -- 2.1.2. Role of the σ*-FeNO interaction in the trans-effect exerted over NO -- 2.1.3. ``Negative´´ trans-influence of the nitrosyl moiety -- 2.1.4. Different reactivity of the L ligand trans to NO.
2.1.5. Other metal centers: Validity of the formal charge descriptions -- 2.1.6. Frontier MOs -- 2.2. Formation and dissociation of NO-complexes: Nitrosylations and denitrosylations -- 2.2.1. Reactions with M(II) precursors (M=Fe, Ru): Proton-assisted dehydration of bound nitrite -- 2.2.2. Reactions with high-spin M(III) precursors -- 2.2.3. Reactions with low-spin, nonheme Fe(III) systems -- 2.2.4. Nitrosylation of nitrile-hydratase and models -- 2.2.5. Nitrosylation of low-spin Fe(III)-heme models, [FeIII(TMPS)(CN)(H2O)]4- and [FeIII(TMPS)(CN)2]5- -- 2.2.6. Nitrosylations of other [FeIII(CN)5(Y)]n- complexes -- 2.2.7. Nitrosylations with Ru(III) precursors -- 2.2.8. Why is the release of NO so fast for the {FeIINO+} heme-nitrosyls? -- 2.3. Electrophilic reactivity toward O-, N-, and S-binding nucleophiles -- 2.3.1. General approach to electrophilic reactivity -- 2.3.2. Correlation of nucleophilic rates with M(NO+)/M(NO) redox potentials -- 3. Complexes with n=7 -- 3.1. Structure, spectroscopy, and electronic descriptions for 5- and 6-coordination. Total spin S=1/2 or 3/2. Alternative... -- 3.1.1. Heme and nonheme 5C nitrosyls with S=1/2 -- 3.1.2. Nonheme and heme 6C nitrosyls with S=1/2 -- 3.1.3. Nonheme nitrosyls with S=3/2 -- 3.2. The trans-effect in heme- and nonheme complexes -- 3.3. Formation and dissociation of NO-complexes: Disproportionation reactions -- 3.3.1. Nitrosylations -- 3.3.2. Dinitrosyl complexes and disproportionation reactions -- 3.4. Nucleophilic reactivity: The reactions of [ML5(NO)]n with oxygen -- 4. Complexes with n=8 -- 4.1. Structure, spectroscopy, and electronic description: Dominant 1NO-/1HNO (S=0) -- 4.1.1. NO--complexes -- 4.1.2. HNO-complexes -- 4.2. Characterization of the NO-/HNO interconversions in solution.
4.3. A potential-pH diagram in aqueous solution for the different complexes based on the [Ru(Me3[9]aneN3)(bpy)]2+ fragment -- 4.4. Comparative reactivity of NO- and HNO complexes -- 4.4.1. Ligand exchange in solution -- 4.4.2. Redox reactivity -- 4.5. Nucleophilic reactivity: The reactions with dioxygen -- 5. Conclusions -- References -- Chapter Three: Recent Progress in Photoinduced NO Delivery With Designed Ruthenium Nitrosyl Complexes -- 1. Introduction -- 2. Photoactive Ru Nitrosyls: What We Knew Before Our Work -- 3. Photoactive {RuNO}6 Nitrosyls Derived from Pentadentate Polypyridine Ligands -- 4. Tuning the Photosensitivity of Ru Nitrosyls to Light of Longer Wavelengths -- 5. Incorporation of Ru Nitrosyls into Polymeric Matrices -- 6. Enhancement of Light Absorption of {Ru-NO}6 Nitrosyls Through Direct Attachment of Dyes -- 7. Conclusion -- Acknowledgments -- References -- Chapter Four: Metal-Assisted Activation of Nitric Oxide-Mechanistic Aspects of Complex Nitrosylation Processes -- 1. Introduction -- 2. Nitric Oxide Activation by Iron(II)/(III) Centers -- 2.1. Nitric oxide activation by synthetic iron(III) porphyrins and hemoproteins -- 2.1.1. Nitric oxide binding to simple iron(III) porphyrin models -- 2.1.2. Interactions of nitric oxide with highly charged iron(III) porphyrins -- 2.1.3. Nitric oxide reactivity toward P450 functional models -- 2.1.4. Nitric oxide activation by selected hemoproteins -- 2.1.4.1. Nitric oxide binding to P450cam -- 2.1.4.2. Nitric oxide binding to metmyoglobin -- 2.1.4.3. Nitric oxide binding to cytochrome c -- 2.1.4.4. Nitric oxide binding to Alcaligenes xylosoxidans cytochrome c -- 2.2. NO binding to iron(III) porphyrazine complexes -- 2.3. Nitrosylation reactions of iron(II) aqua and chelate complexes -- 2.3.1. Nitric oxide binding to the iron(II) center in ILs.
2.3.2. Influence of the fluoride anion on autoxidation of [FeII(edta)(H2O)]2- -- 2.4. Reactivity of nitric oxide toward [Fe-S] models -- 2.5. Interactions of nitric oxide with pentacyanoferrate(II)/(III) -- 2.5.1. Interaction of nitric oxide with pentacyanoferrate(III) -- 2.5.2. Interaction of nitric oxide with pentacyanoferrate(II) -- 3. Nitric Oxide Activation by Ruthenium(III) Centers -- 3.1. Nitric oxide binding to the RuIII(edta) complex -- 3.1.1. Interaction of RuIII(edta) with nitric oxide in buffered aqueous solution -- 3.1.2. Interaction of RuIII(edta) with nitric oxide in ILs -- 3.2. Interaction of nitric oxide with ruthenium(III) ammine and terpyridine complexes -- 3.2.1. Nitric oxide binding to ruthenium(III) ammine complexes -- 3.2.2. Nitric oxide binding to ruthenium(III) terpyridine complexes -- 3.3. Reactivity of NAMI-A complex toward nitric oxide -- 4. Reductive Nitrosylation Reactions -- 4.1. Reductive nitrosylation reactions of Fe(III) porphyrin complexes -- 4.2. Reductive nitrosylation of aquacobalamin and cobalt porphyrins -- 4.2.1. Reductive nitrosylation of water-soluble cobalt porphyrins -- 4.2.2. Reductive nitrosylation of aquacobalamin at low pH -- 5. Concluding Remarks -- Acknowledgments -- References -- Chapter Five: New Insights on {FeNO}n (n=7, 8) Systems as Enzyme Models and HNO Donors -- 1. Background -- 2. {FeNO}7 Complexes as Models for Nonheme Oxygenase Enzymes -- 2.1. High-spin {FeNO}7 complexes -- 2.2. Low-spin {FeNO}7 complexes -- 3. {FeNO}7 Complexes as Precursors to {FeNO}8 Complexes -- 3.1. Low-spin {FeNO}8 complexes -- 3.2. High-spin {FeNO}8 complexes -- 4. Diiron Complexes Containing {FeNO}7 Unit(s) -- 5. Summary and Outlook -- References -- Chapter Six: Design, Reactivity, and Biological Activity of Ruthenium Nitrosyl Complexes -- 1. Introduction -- 2. Tetraaza Ruthenium Complexes.
3. Polypyridine Ruthenium Complexes as NO Delivery Systems -- 4. UV-Vis Electronic Spectrum -- 5. Electrochemistry -- 6. FTIR -- 6.1. Hydroxide electrophylic attack on bipyridine nitrosyl ruthenium complexes -- 7. Photochemical Reactivity -- 8. Vasorelaxation -- 9. Cytotoxicity -- 10. Neglected Tropical Diseases -- 11. Trinuclear Oxo-Centered Ruthenium Carboxylates -- References -- Chapter Seven: Complete and Partial Electron Transfer Involving Coordinated NOx -- 1. Introduction and Presentation of NOx Oxidation States -- 1.1. x=1+ -- 1.2. x=0 -- 1.3. x=1- -- 1.4. x=2- -- 2. Nitrosylmetal Complexes Without Additional Redox-Active Ligands -- 3. Nitrosylmetal Complexes with Additional Redox-Active Ligands -- 3.1. 1,4-Diaza-1,3-butadiene complexes -- 3.2. Porphyrin complexes -- 3.3. 1,2-Dioxolene complexes -- 4. Noninnocent Ligand Potential of the NO2-/NO2 Redox System -- 5. Conclusions -- Acknowledgments -- References -- Chapter Eight: Oxidation Mechanism of Hydroxamic Acids Forming HNO and NO: Implications for Biological Activity -- 1. Introduction -- 2. HXs Oxidation In Vitro and In Vivo -- 2.1. Radiation studies -- 2.1.1. Pulse radiolysis -- 2.1.2. Steady-state radiolysis -- 2.1.3. Oxidation mechanism -- 2.2. Metmyoglobin and H2O2 reactions system -- 2.3. Effects of HXs on cells subjected to oxidative stress -- 2.4. SAHA as a radiosensitizer of hypoxic tumor cells -- 3. Conclusions -- Acknowledgment -- References -- Chapter Nine: Reaction Steps in Nitrogen Monoxide Autoxidation -- 1. History -- 2. Gas-Phase Reaction and Atmospheric Chemistry -- 3. Liquid-Phase Reaction and Biology -- 4. Thermochemistry and Kinetics -- 5. Mechanisms -- 5.1. Termolecular Reaction -- 5.2. Steady-state Approach -- 6. Conclusions -- Acknowledgments -- References -- Index -- Contents of Previous Volumes.
Summary: NOx Related Chemistry is a volume of a series that presents timely and informative summaries of the current progress in a variety of subject areas within inorganic chemistry, ranging from bio-inorganic to solid state studies. This acclaimed serial features reviews written by experts in the field and serves as an indispensable reference to advanced researchers. Each volume contains an index, and each chapter is fully referenced. Best-qualified scientists write on their own recent results dealing with basic fundamentals of NO-chemistry, with an eye into biological and environmental issues Editors and authors are recognized scientists in the field Features comprehensive reviews on the latest developments An indispensable reference to advanced researchers.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan
Available EBKAF-N0003250
Ebrary Ebrary Algeria
Available
Ebrary Ebrary Cyprus
Available
Ebrary Ebrary Egypt
Available
Ebrary Ebrary Libya
Available
Ebrary Ebrary Morocco
Available
Ebrary Ebrary Nepal
Available EBKNP-N0003250
Ebrary Ebrary Sudan

Access a wide range of magazines and books using Pressreader and Ebook central.

Enjoy your reading, British Council Sudan.

Available
Ebrary Ebrary Tunisia
Available
Total holds: 0

Front Cover -- NOx Related Chemistry -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: NOx Linkage Isomerization in Metal Complexes -- 1. Introduction -- 1.1. Modes of binding of NOx moieties in monometallic complexes -- 1.1.1. Nitric oxide complexes -- 1.1.2. NO2 complexes -- 1.1.3. NO3 complexes -- 1.2. Methods that induce linkage isomerization -- 1.3. Techniques for detecting linkage isomers -- 1.4. Factors that affect linkage isomerization -- 2. Linkage Isomerism in Non-Porphyrin NOx Complexes -- 2.1. Group 6 (Cr and Mo) complexes -- 2.1.1. NO complexes -- 2.1.2. NO2 complexes -- 2.2. Group 7 (Mn and Re) complexes -- 2.2.1. NO complexes -- 2.3. Group 8 (Fe, Ru, and Os) complexes -- 2.3.1. NO complexes -- 2.3.2. NO2 complexes -- 2.3.3. NO3 complexes -- 2.4. Group 9 (Co, Rh, and Ir) complexes -- 2.4.1. NO complexes -- 2.4.2. NO2 complexes -- 2.5. Group 10 (Ni, Pd, and Pt) complexes -- 2.5.1. NO complexes -- 2.5.2. NO2 complexes -- 3. Linkage Isomerism in NOx-Coordinated Metalloporphyrins -- 3.1. Manganese NOx porphyrins -- 3.2. Ruthenium and iron NOx porphyrin complexes -- 3.3. Cobalt NOx porphyrins -- 3.4. Hyponitrite complexes of transition metal porphyrins -- 3.4.1. The nitric oxide dimer and its reduced forms -- 3.4.2. Metal hyponitrite binding modes -- 3.5. Heme proteins -- 4. Conclusion -- Acknowledgment -- References -- Chapter Two: Three Redox States of Metallonitrosyls in Aqueous Solution -- 1. Introduction: General Scope -- 2. Complexes with n=6 -- 2.1. Structure, spectroscopy, and electronic description. Total spin S=0. Dominant M-NO+ distribution -- 2.1.1. Significance and importance of the ``back-bonding model´´ -- 2.1.2. Role of the σ*-FeNO interaction in the trans-effect exerted over NO -- 2.1.3. ``Negative´´ trans-influence of the nitrosyl moiety -- 2.1.4. Different reactivity of the L ligand trans to NO.

2.1.5. Other metal centers: Validity of the formal charge descriptions -- 2.1.6. Frontier MOs -- 2.2. Formation and dissociation of NO-complexes: Nitrosylations and denitrosylations -- 2.2.1. Reactions with M(II) precursors (M=Fe, Ru): Proton-assisted dehydration of bound nitrite -- 2.2.2. Reactions with high-spin M(III) precursors -- 2.2.3. Reactions with low-spin, nonheme Fe(III) systems -- 2.2.4. Nitrosylation of nitrile-hydratase and models -- 2.2.5. Nitrosylation of low-spin Fe(III)-heme models, [FeIII(TMPS)(CN)(H2O)]4- and [FeIII(TMPS)(CN)2]5- -- 2.2.6. Nitrosylations of other [FeIII(CN)5(Y)]n- complexes -- 2.2.7. Nitrosylations with Ru(III) precursors -- 2.2.8. Why is the release of NO so fast for the {FeIINO+} heme-nitrosyls? -- 2.3. Electrophilic reactivity toward O-, N-, and S-binding nucleophiles -- 2.3.1. General approach to electrophilic reactivity -- 2.3.2. Correlation of nucleophilic rates with M(NO+)/M(NO) redox potentials -- 3. Complexes with n=7 -- 3.1. Structure, spectroscopy, and electronic descriptions for 5- and 6-coordination. Total spin S=1/2 or 3/2. Alternative... -- 3.1.1. Heme and nonheme 5C nitrosyls with S=1/2 -- 3.1.2. Nonheme and heme 6C nitrosyls with S=1/2 -- 3.1.3. Nonheme nitrosyls with S=3/2 -- 3.2. The trans-effect in heme- and nonheme complexes -- 3.3. Formation and dissociation of NO-complexes: Disproportionation reactions -- 3.3.1. Nitrosylations -- 3.3.2. Dinitrosyl complexes and disproportionation reactions -- 3.4. Nucleophilic reactivity: The reactions of [ML5(NO)]n with oxygen -- 4. Complexes with n=8 -- 4.1. Structure, spectroscopy, and electronic description: Dominant 1NO-/1HNO (S=0) -- 4.1.1. NO--complexes -- 4.1.2. HNO-complexes -- 4.2. Characterization of the NO-/HNO interconversions in solution.

4.3. A potential-pH diagram in aqueous solution for the different complexes based on the [Ru(Me3[9]aneN3)(bpy)]2+ fragment -- 4.4. Comparative reactivity of NO- and HNO complexes -- 4.4.1. Ligand exchange in solution -- 4.4.2. Redox reactivity -- 4.5. Nucleophilic reactivity: The reactions with dioxygen -- 5. Conclusions -- References -- Chapter Three: Recent Progress in Photoinduced NO Delivery With Designed Ruthenium Nitrosyl Complexes -- 1. Introduction -- 2. Photoactive Ru Nitrosyls: What We Knew Before Our Work -- 3. Photoactive {RuNO}6 Nitrosyls Derived from Pentadentate Polypyridine Ligands -- 4. Tuning the Photosensitivity of Ru Nitrosyls to Light of Longer Wavelengths -- 5. Incorporation of Ru Nitrosyls into Polymeric Matrices -- 6. Enhancement of Light Absorption of {Ru-NO}6 Nitrosyls Through Direct Attachment of Dyes -- 7. Conclusion -- Acknowledgments -- References -- Chapter Four: Metal-Assisted Activation of Nitric Oxide-Mechanistic Aspects of Complex Nitrosylation Processes -- 1. Introduction -- 2. Nitric Oxide Activation by Iron(II)/(III) Centers -- 2.1. Nitric oxide activation by synthetic iron(III) porphyrins and hemoproteins -- 2.1.1. Nitric oxide binding to simple iron(III) porphyrin models -- 2.1.2. Interactions of nitric oxide with highly charged iron(III) porphyrins -- 2.1.3. Nitric oxide reactivity toward P450 functional models -- 2.1.4. Nitric oxide activation by selected hemoproteins -- 2.1.4.1. Nitric oxide binding to P450cam -- 2.1.4.2. Nitric oxide binding to metmyoglobin -- 2.1.4.3. Nitric oxide binding to cytochrome c -- 2.1.4.4. Nitric oxide binding to Alcaligenes xylosoxidans cytochrome c -- 2.2. NO binding to iron(III) porphyrazine complexes -- 2.3. Nitrosylation reactions of iron(II) aqua and chelate complexes -- 2.3.1. Nitric oxide binding to the iron(II) center in ILs.

2.3.2. Influence of the fluoride anion on autoxidation of [FeII(edta)(H2O)]2- -- 2.4. Reactivity of nitric oxide toward [Fe-S] models -- 2.5. Interactions of nitric oxide with pentacyanoferrate(II)/(III) -- 2.5.1. Interaction of nitric oxide with pentacyanoferrate(III) -- 2.5.2. Interaction of nitric oxide with pentacyanoferrate(II) -- 3. Nitric Oxide Activation by Ruthenium(III) Centers -- 3.1. Nitric oxide binding to the RuIII(edta) complex -- 3.1.1. Interaction of RuIII(edta) with nitric oxide in buffered aqueous solution -- 3.1.2. Interaction of RuIII(edta) with nitric oxide in ILs -- 3.2. Interaction of nitric oxide with ruthenium(III) ammine and terpyridine complexes -- 3.2.1. Nitric oxide binding to ruthenium(III) ammine complexes -- 3.2.2. Nitric oxide binding to ruthenium(III) terpyridine complexes -- 3.3. Reactivity of NAMI-A complex toward nitric oxide -- 4. Reductive Nitrosylation Reactions -- 4.1. Reductive nitrosylation reactions of Fe(III) porphyrin complexes -- 4.2. Reductive nitrosylation of aquacobalamin and cobalt porphyrins -- 4.2.1. Reductive nitrosylation of water-soluble cobalt porphyrins -- 4.2.2. Reductive nitrosylation of aquacobalamin at low pH -- 5. Concluding Remarks -- Acknowledgments -- References -- Chapter Five: New Insights on {FeNO}n (n=7, 8) Systems as Enzyme Models and HNO Donors -- 1. Background -- 2. {FeNO}7 Complexes as Models for Nonheme Oxygenase Enzymes -- 2.1. High-spin {FeNO}7 complexes -- 2.2. Low-spin {FeNO}7 complexes -- 3. {FeNO}7 Complexes as Precursors to {FeNO}8 Complexes -- 3.1. Low-spin {FeNO}8 complexes -- 3.2. High-spin {FeNO}8 complexes -- 4. Diiron Complexes Containing {FeNO}7 Unit(s) -- 5. Summary and Outlook -- References -- Chapter Six: Design, Reactivity, and Biological Activity of Ruthenium Nitrosyl Complexes -- 1. Introduction -- 2. Tetraaza Ruthenium Complexes.

3. Polypyridine Ruthenium Complexes as NO Delivery Systems -- 4. UV-Vis Electronic Spectrum -- 5. Electrochemistry -- 6. FTIR -- 6.1. Hydroxide electrophylic attack on bipyridine nitrosyl ruthenium complexes -- 7. Photochemical Reactivity -- 8. Vasorelaxation -- 9. Cytotoxicity -- 10. Neglected Tropical Diseases -- 11. Trinuclear Oxo-Centered Ruthenium Carboxylates -- References -- Chapter Seven: Complete and Partial Electron Transfer Involving Coordinated NOx -- 1. Introduction and Presentation of NOx Oxidation States -- 1.1. x=1+ -- 1.2. x=0 -- 1.3. x=1- -- 1.4. x=2- -- 2. Nitrosylmetal Complexes Without Additional Redox-Active Ligands -- 3. Nitrosylmetal Complexes with Additional Redox-Active Ligands -- 3.1. 1,4-Diaza-1,3-butadiene complexes -- 3.2. Porphyrin complexes -- 3.3. 1,2-Dioxolene complexes -- 4. Noninnocent Ligand Potential of the NO2-/NO2 Redox System -- 5. Conclusions -- Acknowledgments -- References -- Chapter Eight: Oxidation Mechanism of Hydroxamic Acids Forming HNO and NO: Implications for Biological Activity -- 1. Introduction -- 2. HXs Oxidation In Vitro and In Vivo -- 2.1. Radiation studies -- 2.1.1. Pulse radiolysis -- 2.1.2. Steady-state radiolysis -- 2.1.3. Oxidation mechanism -- 2.2. Metmyoglobin and H2O2 reactions system -- 2.3. Effects of HXs on cells subjected to oxidative stress -- 2.4. SAHA as a radiosensitizer of hypoxic tumor cells -- 3. Conclusions -- Acknowledgment -- References -- Chapter Nine: Reaction Steps in Nitrogen Monoxide Autoxidation -- 1. History -- 2. Gas-Phase Reaction and Atmospheric Chemistry -- 3. Liquid-Phase Reaction and Biology -- 4. Thermochemistry and Kinetics -- 5. Mechanisms -- 5.1. Termolecular Reaction -- 5.2. Steady-state Approach -- 6. Conclusions -- Acknowledgments -- References -- Index -- Contents of Previous Volumes.

NOx Related Chemistry is a volume of a series that presents timely and informative summaries of the current progress in a variety of subject areas within inorganic chemistry, ranging from bio-inorganic to solid state studies. This acclaimed serial features reviews written by experts in the field and serves as an indispensable reference to advanced researchers. Each volume contains an index, and each chapter is fully referenced. Best-qualified scientists write on their own recent results dealing with basic fundamentals of NO-chemistry, with an eye into biological and environmental issues Editors and authors are recognized scientists in the field Features comprehensive reviews on the latest developments An indispensable reference to advanced researchers.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.