Lanthanides and Actinides in Molecular Magnetism.

By: Layfield, Richard
Contributor(s): Murugesu, Muralee
Publisher: Berlin : John Wiley & Sons, Incorporated, 2015Copyright date: ©2014Edition: 1st edDescription: 1 online resource (367 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9783527673506Subject(s): Rare earth metals.;Actinide elementsGenre/Form: Electronic books. Additional physical formats: Print version:: Lanthanides and Actinides in Molecular MagnetismDDC classification: 546.41 LOC classification: QD151.3 -- .L36 2015ebOnline resources: Click to View
Contents:
Intro -- Lanthanides and Actinides in Molecular Magnetism -- Contents -- Preface -- List of Contributors -- Chapter 1 Electronic Structure and Magnetic Properties of Lanthanide Molecular Complexes -- 1.1 Introduction -- 1.2 Free Ion Electronic Structure -- 1.2.1 Free Ion Magnetism -- 1.3 Electronic Structure of Lanthanide Ions in a Ligand Field -- 1.3.1 Stevens' Formalism -- 1.3.2 Wybourne's Formalism -- 1.3.3 Standardization -- 1.3.4 Calculation of Crystal Field Parameters -- 1.4 Magnetic Properties of Isolated Lanthanide Ions -- 1.4.1 Effect of a Magnetic Field -- 1.4.2 EPR Spectroscopy of Lanthanide Complexes -- 1.5 Exchange Coupling in Systems Containing Orbitally Degenerate Lanthanides -- Acknowledgements -- References -- Chapter 2 Mononuclear Lanthanide Complexes: Use of the Crystal Field Theory to Design Single-Ion Magnets and Spin Qubits -- 2.1 Introduction -- 2.2 Modelling the Magnetic Properties of Lanthanide Single-Ion Magnets: The Use of the Crystal Field Model -- 2.2.1 Theoretical Background -- 2.2.2 How to Determine the Crystal-Field Parameters: 1. The Ishikawa Approach -- 2.2.3 How to Determine the Crystal-Field Parameters: 2. The Point Charge Electrostatic Model -- 2.2.4 How to Determine the Crystal-Field Parameters: 3. The Effective Point Charge Model -- 2.3 Magneto-Structural Correlations for Some Typical Symmetries -- 2.4 Impact of Lanthanide Complexes in Quantum Computing -- 2.4.1 Quantum Computing Paradigms and Design Criteria -- 2.4.2 Combining Physical Qubit Implementations with Lanthanide Complexes -- 2.4.3 Molecular Spin Qubits -- 2.5 Conclusions -- Acknowledgements -- References -- Chapter 3 Polynuclear Lanthanide Single Molecule Magnets -- 3.1 Introduction -- 3.2 Synthetic Strategies -- 3.2.1 Dy3 Triangles and Their Derivatives -- 3.2.1.1 Seminal Dy3 Triangle -- 3.2.1.2 Other Triangular Dy3 Systems.
3.2.1.3 The Coupling of Dy3 Triangles -- 3.2.2 Linear Polynuclear Lanthanide Complexes Showing Robust SMM Behaviour -- 3.2.2.1 Linear Dy3 SMMs -- 3.2.2.2 Linear Dy4 SMMs -- 3.2.3 Planar Dy4 SMMs -- 3.2.4 Dyn SMMs Having Multiple μn-O (n>4) Bridges -- 3.2.4.1 The Dy4 Grids Fixed by μ4-O Atom -- 3.2.4.2 The Dy4 Tetrahedron Fixed by μ4-O Atom -- 3.2.4.3 The Dy5 Pyramid Fixed by μ5-O Atom -- 3.2.5 Hydrazone-Based Lanthanide SMMs -- 3.2.5.1 The Assembly of Dy6 Triangular Prism with Dy2 Units -- 3.2.5.2 A Dy3 Molecular Cluster Pair (Dy6) -- 3.2.6 The Organometallic Synthesis - A New Approach -- 3.3 Conclusion -- References -- Chapter 4 Lanthanides in Extended Molecular Networks -- 4.1 Introduction -- 4.2 Extended Networks Based on Gd3+ -- 4.2.1 Metal-Organic Frameworks -- 4.2.1.1 Magneto-Caloric Effect -- 4.2.1.2 Slow Magnetic Relaxation and Phonon Bottleneck Effects -- 4.2.2 Magnetic Chains -- 4.2.2.1 Magnetic Interactions Involving Gd3+ Ions -- 4.2.2.2 Gadolinium-Radical Chains -- 4.3 Extended Networks Based on Anisotropic Ions -- 4.3.1 SCM in a Nutshell -- 4.3.2 An Overview of Monodimensional Lanthanide Chains Based on Anisotropic Ions -- 4.3.2.1 Chains Based on 4f Ions -- 4.3.2.2 Chains Based on 3d-4f Ions -- 4.3.2.3 Chains Based on Radicals and 4f Ions -- 4.3.3 The Key Point of Noncollinearity of Magnetic Anisotropy -- 4.4 Conclusions -- References -- Chapter 5 Experimental Aspects of Lanthanide Single-Molecule Magnet Physics -- 5.1 Introduction -- 5.2 Manifestation of Single-Molecule Magnet Behaviour -- 5.2.1 Magnetization and ac Susceptibility Measurements -- 5.2.2 NMR Spectroscopy -- 5.2.3 Muon Spin Rotation -- 5.3 Quantifying the Magnetic Anisotropy -- 5.4 Splitting of the Ground Multiplet -- 5.4.1 Magnetic Resonance Spectroscopies -- 5.4.2 Luminescence Spectroscopy -- 5.4.3 Inelastic Neutron Scattering.
5.5 Observation of the Signatures of Exchange Coupling -- 5.5.1 Chemical Substitution -- 5.5.2 X-Ray Magnetic Circular Dichroism -- 5.6 Concluding Remarks and Perspectives -- References -- Chapter 6 Computational Modelling of the Magnetic Properties of Lanthanide Compounds -- 6.1 Introduction -- 6.2 Ab Initio Description of Lanthanides and its Relation to Other Methods -- 6.2.1 Ab Initio Approach for the Electronic Structure of Lanthanides -- 6.2.1.1 Accounting for Static Electron Correlation within CASSCF -- 6.2.1.2 Accounting for Dynamical Electron Correlation: An Important Step Towards Accurate Predictions -- 6.2.1.3 Accounting for Relativistic Effects within the Douglas-Kroll-Hess Theory -- 6.2.1.4 Spin-Orbit Multiplets of Free Lanthanide Ions: Relativistic CASSCF/RASSI Method in Work -- 6.2.2 Ab Initio Versus Two-Component DFT -- 6.2.3 Ab Initio Versus Phenomenological Crystal Field Theory for Lanthanides -- 6.3 Ab Initio Calculation of Anisotropic Magnetic Properties of Mononuclear Complexes -- 6.3.1 Implementation of Ab Initio Methodology: SINGLE_ANISO Program -- 6.3.2 Temperature-Dependent Magnetic Susceptibility and Field-Dependent Magnetization -- 6.3.3 Magnetic Anisotropy in Low-Lying Doublets -- 6.3.4 Ab Initio Crystal Field -- 6.4 Ab Initio Calculation of Anisotropic Magnetic Properties of Polynuclear Complexes -- 6.4.1 Two-Step Approach for the Calculation of Electronic Structure of Polynuclear Lanthanide Complexes -- 6.4.2 Key Rules for Cluster Fragmentation -- 6.4.3 Implementation of Ab Initio Methodology: POLY_ANISO Program -- 6.4.4 Noncollinear Magnetic Structure of Lnn Complexes -- 6.4.5 Mixed Lanthanide-Transition Metal Compounds -- 6.4.6 Lanthanide-Containing Magnetic Chains -- 6.5 Conclusions -- References -- Chapter 7 Lanthanide Complexes as Realizations of Qubits and Qugates for Quantum Computing.
7.1 Introduction to Quantum Computation -- 7.1.1 General Introduction -- 7.1.2 Definition of Qubits, Qugates, Timescales and Essential Requirements -- 7.1.3 Current Proposals for the QC Hardware -- 7.1.3.1 Trapped Ions -- 7.1.3.2 Nuclear Spins -- 7.1.3.3 Superconducting Qubits -- 7.1.3.4 Spin Qubits -- 7.1.3.5 Photons -- 7.1.3.6 Hybrid Proposals and Quantum Circuits -- 7.2 Quantum Computing with Electron Spin Qubits -- 7.2.1 Electronic Spins in Semiconductors: QDs and Dopants -- 7.2.1.1 Quantum Dots -- 7.2.1.2 Dopants and Defects -- 7.2.2 Electronic Spins in Molecules: Organic Radicals and Transition Metal Complexes -- 7.2.2.1 Organic Radicals -- 7.2.2.2 Transition Metal Complexes -- 7.3 Single Lanthanide Ions as Spin Qubits -- 7.3.1 Quantum Coherence of Lanthanide Ions Doped into Crystalline Solids -- 7.3.2 Control of the Magnetic Anisotropy of Lanthanide Ions: Chemical Design of Spin Qubits -- 7.3.2.1 Mononuclear Single Molecule Magnets -- 7.3.2.2 Gadolinium(III) POMs as Spin Qubits -- 7.3.2.3 Mononuclear SMMs of Ln(III) Ions with Nonzero Orbital Moment -- 7.4 Lanthanide Molecules as Prototypes of Two-Qubit Quantum Gates -- 7.4.1 A Family of Asymmetric [Ln2] Complexes with Weak Magnetic Coupling -- 7.4.2 Heterometallic [LnLn'] Complexes: A Fabric of Chemical Asymmetry and Individual Qubits -- 7.4.3 Evaluating Qubit Properties -- 7.4.4 Weak Coupling -- 7.4.5 Asymmetry and Energy Diagrams -- 7.4.6 Decoherence of the Molecular Quantum Processor Prototypes -- 7.5 Conclusions and Outlook -- References -- Chapter 8 Bis(phthalocyaninato) Lanthanide(III) Complexes - from Molecular Magnetism to Spintronic Devices -- 8.1 Introduction -- 8.1.1 Molecular Magnetism -- 8.1.2 Multinuclear Versus Mononuclear: d- Versus f-Metal Ions -- 8.1.3 Molecular Versus Organic Spintronics -- 8.2 Synthesis and Structure of LnPc2 Complexes.
8.2.1 Synthesis of Bis(phthalocyaninato) Lanthanide(III) Complexes -- 8.2.2 Synthesis of Heteroleptic Lanthanide(III) Complexes Containing Porphyrin-Based Ligands -- 8.2.3 Oxidation States of Bis(phthalocyaninato) Lanthanide(III) Complexes -- 8.2.4 Rotation Angles and Skew Angles in LnPc2 in Relation to the Lanthanide Contraction -- 8.3 Bulk Magnetism of LnPc2 Complexes -- 8.3.1 Magnetism of Bis(phthalocyaninato) Lanthanide(III) Complexes -- 8.3.2 Three Spin Systems in [TbPc2]0 Single-Ion Molecular Magnets (SIMMs) -- 8.3.2.1 The Organic Radical (S) -- 8.3.2.2 The Electronic Spin (J) -- 8.3.2.3 The Nuclear Spin (I) -- 8.3.3 Further SIMs of LnPc2 with Ln = Tb, Dy and Ho -- 8.3.4 Internal Kondo in LnPc2 Complexes with Ln = Ce, Yb -- 8.3.5 Stable Organic Radicals S=1/2 in LnPc2 with Ln = Y, Lu -- 8.3.6 A Special Case: Half-Filling of the f-Orbitals in GdPc2 and its Consequences -- 8.4 Surface Magnetism of LnPc2 Complexes -- 8.4.1 Deposition of [TbPc2]0 SIMMs on Nonmagnetic Substrates -- 8.4.1.1 Highly Oriented Pyrolitic Graphite -- 8.4.1.2 Au(111) -- 8.4.1.3 Cu(111) -- 8.4.1.4 Cu(100) -- 8.4.2 Deposition of [TbPc2]0 SIMs on Magnetic Substrates -- 8.4.2.1 Nickel Thin Films -- 8.4.2.2 Cobalt Thin Films -- 8.4.2.3 LSMO -- 8.4.2.4 Manganese and Cobalt Oxide Layers -- 8.4.2.5 Spin Polarized Scanning Tunnelling Microscopy (SP-STM) on Co/Ir(111) -- 8.5 Molecular Spintronic Devices on the Base of [TbPc2]0 SIMs -- 8.5.1 Graphene Transistor -- 8.5.2 Supramolecular Spin Valve -- 8.5.3 Molecular Spin Resonator -- 8.5.4 Molecular Spin Transistor -- 8.6 Conclusion and Outlook -- Abbreviations -- References -- Chapter 9 Lanthanides and the Magnetocaloric Effect -- 9.1 Applications of Magnets -- 9.2 Cold Reasoning -- 9.3 Current Technologies -- 9.4 How Paramagnets Act as Refrigerants -- 9.5 More Parameters -- 9.6 Aims.
9.7 Important Concepts for a Large Magnetocaloric Effect.
Summary: The first reference on this rapidly growing topic provides an essential up-to-date guide to current and emerging trends. A group of international experts has been carefully selected by the editors to cover all the central aspects, with a focus on molecular species while also including industrial applications. The resulting unique overview is a must-have for researchers, both in academia and industry, who are entering or already working in the field.
Item type Current location Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan
Available EBKAF-N0001726
Ebrary Ebrary Algeria
Available
Ebrary Ebrary Cyprus
Available
Ebrary Ebrary Egypt
Available
Ebrary Ebrary Libya
Available
Ebrary Ebrary Morocco
Available
Ebrary Ebrary Nepal
Available EBKNP-N0001726
Ebrary Ebrary Sudan

Access a wide range of magazines and books using Pressreader and Ebook central.

Enjoy your reading, British Council Sudan.

Available
Ebrary Ebrary Tunisia
Available
Total holds: 0

Intro -- Lanthanides and Actinides in Molecular Magnetism -- Contents -- Preface -- List of Contributors -- Chapter 1 Electronic Structure and Magnetic Properties of Lanthanide Molecular Complexes -- 1.1 Introduction -- 1.2 Free Ion Electronic Structure -- 1.2.1 Free Ion Magnetism -- 1.3 Electronic Structure of Lanthanide Ions in a Ligand Field -- 1.3.1 Stevens' Formalism -- 1.3.2 Wybourne's Formalism -- 1.3.3 Standardization -- 1.3.4 Calculation of Crystal Field Parameters -- 1.4 Magnetic Properties of Isolated Lanthanide Ions -- 1.4.1 Effect of a Magnetic Field -- 1.4.2 EPR Spectroscopy of Lanthanide Complexes -- 1.5 Exchange Coupling in Systems Containing Orbitally Degenerate Lanthanides -- Acknowledgements -- References -- Chapter 2 Mononuclear Lanthanide Complexes: Use of the Crystal Field Theory to Design Single-Ion Magnets and Spin Qubits -- 2.1 Introduction -- 2.2 Modelling the Magnetic Properties of Lanthanide Single-Ion Magnets: The Use of the Crystal Field Model -- 2.2.1 Theoretical Background -- 2.2.2 How to Determine the Crystal-Field Parameters: 1. The Ishikawa Approach -- 2.2.3 How to Determine the Crystal-Field Parameters: 2. The Point Charge Electrostatic Model -- 2.2.4 How to Determine the Crystal-Field Parameters: 3. The Effective Point Charge Model -- 2.3 Magneto-Structural Correlations for Some Typical Symmetries -- 2.4 Impact of Lanthanide Complexes in Quantum Computing -- 2.4.1 Quantum Computing Paradigms and Design Criteria -- 2.4.2 Combining Physical Qubit Implementations with Lanthanide Complexes -- 2.4.3 Molecular Spin Qubits -- 2.5 Conclusions -- Acknowledgements -- References -- Chapter 3 Polynuclear Lanthanide Single Molecule Magnets -- 3.1 Introduction -- 3.2 Synthetic Strategies -- 3.2.1 Dy3 Triangles and Their Derivatives -- 3.2.1.1 Seminal Dy3 Triangle -- 3.2.1.2 Other Triangular Dy3 Systems.

3.2.1.3 The Coupling of Dy3 Triangles -- 3.2.2 Linear Polynuclear Lanthanide Complexes Showing Robust SMM Behaviour -- 3.2.2.1 Linear Dy3 SMMs -- 3.2.2.2 Linear Dy4 SMMs -- 3.2.3 Planar Dy4 SMMs -- 3.2.4 Dyn SMMs Having Multiple μn-O (n>4) Bridges -- 3.2.4.1 The Dy4 Grids Fixed by μ4-O Atom -- 3.2.4.2 The Dy4 Tetrahedron Fixed by μ4-O Atom -- 3.2.4.3 The Dy5 Pyramid Fixed by μ5-O Atom -- 3.2.5 Hydrazone-Based Lanthanide SMMs -- 3.2.5.1 The Assembly of Dy6 Triangular Prism with Dy2 Units -- 3.2.5.2 A Dy3 Molecular Cluster Pair (Dy6) -- 3.2.6 The Organometallic Synthesis - A New Approach -- 3.3 Conclusion -- References -- Chapter 4 Lanthanides in Extended Molecular Networks -- 4.1 Introduction -- 4.2 Extended Networks Based on Gd3+ -- 4.2.1 Metal-Organic Frameworks -- 4.2.1.1 Magneto-Caloric Effect -- 4.2.1.2 Slow Magnetic Relaxation and Phonon Bottleneck Effects -- 4.2.2 Magnetic Chains -- 4.2.2.1 Magnetic Interactions Involving Gd3+ Ions -- 4.2.2.2 Gadolinium-Radical Chains -- 4.3 Extended Networks Based on Anisotropic Ions -- 4.3.1 SCM in a Nutshell -- 4.3.2 An Overview of Monodimensional Lanthanide Chains Based on Anisotropic Ions -- 4.3.2.1 Chains Based on 4f Ions -- 4.3.2.2 Chains Based on 3d-4f Ions -- 4.3.2.3 Chains Based on Radicals and 4f Ions -- 4.3.3 The Key Point of Noncollinearity of Magnetic Anisotropy -- 4.4 Conclusions -- References -- Chapter 5 Experimental Aspects of Lanthanide Single-Molecule Magnet Physics -- 5.1 Introduction -- 5.2 Manifestation of Single-Molecule Magnet Behaviour -- 5.2.1 Magnetization and ac Susceptibility Measurements -- 5.2.2 NMR Spectroscopy -- 5.2.3 Muon Spin Rotation -- 5.3 Quantifying the Magnetic Anisotropy -- 5.4 Splitting of the Ground Multiplet -- 5.4.1 Magnetic Resonance Spectroscopies -- 5.4.2 Luminescence Spectroscopy -- 5.4.3 Inelastic Neutron Scattering.

5.5 Observation of the Signatures of Exchange Coupling -- 5.5.1 Chemical Substitution -- 5.5.2 X-Ray Magnetic Circular Dichroism -- 5.6 Concluding Remarks and Perspectives -- References -- Chapter 6 Computational Modelling of the Magnetic Properties of Lanthanide Compounds -- 6.1 Introduction -- 6.2 Ab Initio Description of Lanthanides and its Relation to Other Methods -- 6.2.1 Ab Initio Approach for the Electronic Structure of Lanthanides -- 6.2.1.1 Accounting for Static Electron Correlation within CASSCF -- 6.2.1.2 Accounting for Dynamical Electron Correlation: An Important Step Towards Accurate Predictions -- 6.2.1.3 Accounting for Relativistic Effects within the Douglas-Kroll-Hess Theory -- 6.2.1.4 Spin-Orbit Multiplets of Free Lanthanide Ions: Relativistic CASSCF/RASSI Method in Work -- 6.2.2 Ab Initio Versus Two-Component DFT -- 6.2.3 Ab Initio Versus Phenomenological Crystal Field Theory for Lanthanides -- 6.3 Ab Initio Calculation of Anisotropic Magnetic Properties of Mononuclear Complexes -- 6.3.1 Implementation of Ab Initio Methodology: SINGLE_ANISO Program -- 6.3.2 Temperature-Dependent Magnetic Susceptibility and Field-Dependent Magnetization -- 6.3.3 Magnetic Anisotropy in Low-Lying Doublets -- 6.3.4 Ab Initio Crystal Field -- 6.4 Ab Initio Calculation of Anisotropic Magnetic Properties of Polynuclear Complexes -- 6.4.1 Two-Step Approach for the Calculation of Electronic Structure of Polynuclear Lanthanide Complexes -- 6.4.2 Key Rules for Cluster Fragmentation -- 6.4.3 Implementation of Ab Initio Methodology: POLY_ANISO Program -- 6.4.4 Noncollinear Magnetic Structure of Lnn Complexes -- 6.4.5 Mixed Lanthanide-Transition Metal Compounds -- 6.4.6 Lanthanide-Containing Magnetic Chains -- 6.5 Conclusions -- References -- Chapter 7 Lanthanide Complexes as Realizations of Qubits and Qugates for Quantum Computing.

7.1 Introduction to Quantum Computation -- 7.1.1 General Introduction -- 7.1.2 Definition of Qubits, Qugates, Timescales and Essential Requirements -- 7.1.3 Current Proposals for the QC Hardware -- 7.1.3.1 Trapped Ions -- 7.1.3.2 Nuclear Spins -- 7.1.3.3 Superconducting Qubits -- 7.1.3.4 Spin Qubits -- 7.1.3.5 Photons -- 7.1.3.6 Hybrid Proposals and Quantum Circuits -- 7.2 Quantum Computing with Electron Spin Qubits -- 7.2.1 Electronic Spins in Semiconductors: QDs and Dopants -- 7.2.1.1 Quantum Dots -- 7.2.1.2 Dopants and Defects -- 7.2.2 Electronic Spins in Molecules: Organic Radicals and Transition Metal Complexes -- 7.2.2.1 Organic Radicals -- 7.2.2.2 Transition Metal Complexes -- 7.3 Single Lanthanide Ions as Spin Qubits -- 7.3.1 Quantum Coherence of Lanthanide Ions Doped into Crystalline Solids -- 7.3.2 Control of the Magnetic Anisotropy of Lanthanide Ions: Chemical Design of Spin Qubits -- 7.3.2.1 Mononuclear Single Molecule Magnets -- 7.3.2.2 Gadolinium(III) POMs as Spin Qubits -- 7.3.2.3 Mononuclear SMMs of Ln(III) Ions with Nonzero Orbital Moment -- 7.4 Lanthanide Molecules as Prototypes of Two-Qubit Quantum Gates -- 7.4.1 A Family of Asymmetric [Ln2] Complexes with Weak Magnetic Coupling -- 7.4.2 Heterometallic [LnLn'] Complexes: A Fabric of Chemical Asymmetry and Individual Qubits -- 7.4.3 Evaluating Qubit Properties -- 7.4.4 Weak Coupling -- 7.4.5 Asymmetry and Energy Diagrams -- 7.4.6 Decoherence of the Molecular Quantum Processor Prototypes -- 7.5 Conclusions and Outlook -- References -- Chapter 8 Bis(phthalocyaninato) Lanthanide(III) Complexes - from Molecular Magnetism to Spintronic Devices -- 8.1 Introduction -- 8.1.1 Molecular Magnetism -- 8.1.2 Multinuclear Versus Mononuclear: d- Versus f-Metal Ions -- 8.1.3 Molecular Versus Organic Spintronics -- 8.2 Synthesis and Structure of LnPc2 Complexes.

8.2.1 Synthesis of Bis(phthalocyaninato) Lanthanide(III) Complexes -- 8.2.2 Synthesis of Heteroleptic Lanthanide(III) Complexes Containing Porphyrin-Based Ligands -- 8.2.3 Oxidation States of Bis(phthalocyaninato) Lanthanide(III) Complexes -- 8.2.4 Rotation Angles and Skew Angles in LnPc2 in Relation to the Lanthanide Contraction -- 8.3 Bulk Magnetism of LnPc2 Complexes -- 8.3.1 Magnetism of Bis(phthalocyaninato) Lanthanide(III) Complexes -- 8.3.2 Three Spin Systems in [TbPc2]0 Single-Ion Molecular Magnets (SIMMs) -- 8.3.2.1 The Organic Radical (S) -- 8.3.2.2 The Electronic Spin (J) -- 8.3.2.3 The Nuclear Spin (I) -- 8.3.3 Further SIMs of LnPc2 with Ln = Tb, Dy and Ho -- 8.3.4 Internal Kondo in LnPc2 Complexes with Ln = Ce, Yb -- 8.3.5 Stable Organic Radicals S=1/2 in LnPc2 with Ln = Y, Lu -- 8.3.6 A Special Case: Half-Filling of the f-Orbitals in GdPc2 and its Consequences -- 8.4 Surface Magnetism of LnPc2 Complexes -- 8.4.1 Deposition of [TbPc2]0 SIMMs on Nonmagnetic Substrates -- 8.4.1.1 Highly Oriented Pyrolitic Graphite -- 8.4.1.2 Au(111) -- 8.4.1.3 Cu(111) -- 8.4.1.4 Cu(100) -- 8.4.2 Deposition of [TbPc2]0 SIMs on Magnetic Substrates -- 8.4.2.1 Nickel Thin Films -- 8.4.2.2 Cobalt Thin Films -- 8.4.2.3 LSMO -- 8.4.2.4 Manganese and Cobalt Oxide Layers -- 8.4.2.5 Spin Polarized Scanning Tunnelling Microscopy (SP-STM) on Co/Ir(111) -- 8.5 Molecular Spintronic Devices on the Base of [TbPc2]0 SIMs -- 8.5.1 Graphene Transistor -- 8.5.2 Supramolecular Spin Valve -- 8.5.3 Molecular Spin Resonator -- 8.5.4 Molecular Spin Transistor -- 8.6 Conclusion and Outlook -- Abbreviations -- References -- Chapter 9 Lanthanides and the Magnetocaloric Effect -- 9.1 Applications of Magnets -- 9.2 Cold Reasoning -- 9.3 Current Technologies -- 9.4 How Paramagnets Act as Refrigerants -- 9.5 More Parameters -- 9.6 Aims.

9.7 Important Concepts for a Large Magnetocaloric Effect.

The first reference on this rapidly growing topic provides an essential up-to-date guide to current and emerging trends. A group of international experts has been carefully selected by the editors to cover all the central aspects, with a focus on molecular species while also including industrial applications. The resulting unique overview is a must-have for researchers, both in academia and industry, who are entering or already working in the field.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

to post a comment.