Applied Superconductivity : Handbook on Devices and Applications.

By: Seidel, Paul
Series: Encyclopedia of Applied Physics Ser: Publisher: Weinheim : John Wiley & Sons, Incorporated, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (1316 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9783527670666Subject(s): Superconductivity -- Handbooks, manuals, etc.;SuperconductorsGenre/Form: Electronic books. Additional physical formats: Print version:: Applied Superconductivity : Handbook on Devices and ApplicationsDDC classification: 621.35 LOC classification: QC611.924.A675 2015Online resources: Click to View
Contents:
Intro -- Applied Superconductivity -- Contents -- Conductorart by Claus Grupen (drawing) -- SQUIDart by Claus Grupen (drawing) -- Preface -- List of Contributors -- Volume 1 -- Chapter 1 Fundamentals -- 1.1 Superconductivity -- 1.1.1 Basic Properties and Parameters of Superconductors -- 1.1.1.1 Superconducting Transition and Loss of DC Resistance -- 1.1.1.2 Ideal Diamagnetism, Flux Quantization, and Critical Fields -- 1.1.1.3 The Origin of Flux Quantization, London Penetration Depth and Ginzburg-Landau Coherence Length -- 1.1.1.4 Critical Currents -- References -- 1.1.2 Review on Superconducting Materials -- 1.1.2.1 Introduction -- 1.1.2.2 Cuprate High-Temperature Superconductors -- 1.1.2.3 Other Oxide Superconductors -- 1.1.2.4 Iron-Based Superconductors -- 1.1.2.5 Heavy Fermion Superconductors -- 1.1.2.6 Organic and Other Carbon-Based Superconductors -- 1.1.2.7 Borides and Borocarbides -- References -- 1.2 Main Related Effects -- 1.2.1 Proximity Effect -- 1.2.1.1 Introduction -- 1.2.1.2 Metal-Insulator Contact -- 1.2.1.3 Normal Metal-Superconductor Contact -- 1.2.1.4 Ferromagnetic Metal-Superconductor Contact -- 1.2.1.5 New Perspectives and New Challenges -- 1.2.1.6 Summary -- References -- 1.2.2 Tunneling and Superconductivity -- 1.2.2.1 Introduction -- 1.2.2.2 Normal/Insulator/Normal Tunnel Junctions -- 1.2.2.3 Normal/Insulator/Superconducting Tunnel Junctions -- 1.2.2.4 Superconductor/Insulator/Superconducting Tunnel Junctions -- 1.2.2.5 Superconducting Quantum Interference Devices (SQUIDs) -- 1.2.2.6 Phonon Structure -- 1.2.2.7 Geometrical Resonances -- 1.2.2.8 Scanning Tunneling Microscopy -- 1.2.2.9 Charging Effects -- References -- 1.2.3 Flux Pinning -- 1.2.3.1 Introduction -- 1.2.3.2 Flux Lines, Flux Motion, and Dissipation -- 1.2.3.3 Sources of Flux Pinning -- 1.2.3.4 Flux Pinning in Technological Superconductors.
1.2.3.5 Experimental Determination of Pinning Forces -- 1.2.3.6 Regimes of Flux Motion -- 1.2.3.7 Limitations on Core Pinning Efficacy -- 1.2.3.8 Magnetic Pinning of Flux Lines -- 1.2.3.9 Flux Pinning Anisotropy -- 1.2.3.10 Maximum Entropy Treatment of Flux Pinning -- References -- 1.2.4 AC Losses and Numerical Modeling of Superconductors -- 1.2.4.1 Introduction -- 1.2.4.2 General Features of AC Loss Characteristics -- 1.2.4.3 Measuring AC Losses -- 1.2.4.3.1 Transport Losses -- 1.2.4.3.2 Magnetization Losses -- 1.2.4.3.3 Combination of Transport and Magnetization AC Losses -- 1.2.4.4 Computing AC Losses -- 1.2.4.4.1 Analytical Computation -- 1.2.4.4.2 Numerical Computation -- References -- Chapter 2 Superconducting Materials -- 2.1 Low-Temperature Superconductors -- 2.1.1 Metals, Alloys, and Intermetallic Compounds -- 2.1.1.1 Introduction -- 2.1.1.2 Type I and Type II Superconductor Elements and High-Field Alloys -- 2.1.1.2.1 Fundamental Superconductor Properties -- 2.1.1.2.2 Elemental Superconductors and Their Applications -- 2.1.1.2.3 The Effect of Alloying -- 2.1.1.3 Superconducting Intermetallic Compounds -- 2.1.1.4 Pinning in Hard Type II Superconductors -- 2.1.1.5 Design Principles of Technical Conductors -- 2.1.1.5.1 Electromagnetic Considerations -- 2.1.1.5.2 Mechanical Properties -- 2.1.1.5.3 Co-Workability and Compatibility of Wire Components -- 2.1.1.5.4 Cost Aspects -- 2.1.1.6 Wire Manufacturing Routes and Properties -- 2.1.1.6.1 NbTi Wires -- 2.1.1.6.2 Nb3Sn -- 2.1.1.7 Built-Up and Cabled Conductors -- 2.1.1.7.1 Wire-in-Channel (WiC) -- 2.1.1.7.2 Cabled Conductors -- 2.1.1.8 Concluding Remarks -- Acknowledgments -- References -- 2.1.2 Magnesium Diboride -- 2.1.2.1 Introduction -- 2.1.2.2 Intrinsic and Extrinsic Properties of MgB2 -- 2.1.2.3 Sample Preparation -- 2.1.2.3.1 MgB2 Phase Diagram and Polycrystals Synthesis.
2.1.2.3.2 MgB2 Single Crystals -- 2.1.2.3.3 MgB2 Thin Films -- 2.1.2.4 Applications of MgB2 -- 2.1.2.4.1 Wires and Tapes -- 2.1.2.4.2 Electronic Applications -- 2.1.2.5 Summary and Outlook -- References -- 2.2 High-Temperature Superconductors -- 2.2.1 Cuprate High-Temperature Superconductors -- 2.2.1.1 Introduction -- 2.2.1.2 Structural Aspects -- 2.2.1.3 Metallurgical Aspects -- 2.2.1.4 Structure and Tc -- 2.2.1.5 Superconductive Coupling -- References -- 2.2.2 Iron-Based Superconductors: Materials Aspects for Applications -- 2.2.2.1 Introduction -- 2.2.2.2 General Aspects of Fe-Based Superconductors -- 2.2.2.3 Material Preparation -- 2.2.2.4 Superconducting Properties -- 2.2.2.4.1 Critical Temperature Tc -- 2.2.2.4.2 Critical Fields and Characteristic Lengths -- 2.2.2.4.3 Critical Current Density Jc -- 2.2.2.5 Critical Current Pinning -- 2.2.2.6 Grain Boundaries -- 2.2.2.7 Wires and Tapes -- 2.2.2.8 Coated Conductors -- 2.2.2.9 Electronic Applications -- 2.2.2.10 Summary -- References -- Chapter 3 Technology, Preparation, and Characterization -- 3.1 Bulk Materials -- 3.1.1 Preparation of Bulk and Textured Superconductors -- 3.1.1.1 Introduction -- 3.1.1.2 Melt Processed REBCO -- 3.1.1.2.1 Process Steps -- 3.1.1.2.2 Melt Processing Thermodynamics -- 3.1.1.2.3 Powder Compacting -- 3.1.1.2.4 Texture Process -- 3.1.1.2.5 Single Grain Fabrication -- 3.1.1.2.6 Mechanical Properties -- 3.1.1.2.7 Doping Strategy -- 3.1.1.3 Characterization -- 3.1.1.3.1 Electromagnetic Force -- 3.1.1.3.2 Magnetization and Field Mapping Technique of Bulk Superconductors -- 3.1.1.3.3 Trapped Field Magnetic Flux Density -- 3.1.1.3.4 Multiseeded Bulk Characterization -- 3.1.1.3.5 Comparison of the REBCO Bulk Materials -- References -- 3.1.2 Single crystal growth of the high temperature superconducting cuprates.
3.1.2.1 General Problems in the Crystal Growth of the High Tc Cuprate Superconductors -- 3.1.2.2 YBa2Cu3O7-δ', YBa2Cu4O8, and REBa2Cu3O7-δ (RE, Rare Earth Element) -- 3.1.2.3 The 214-Compounds La2-xSrxCuO4, Nd2-xCexCuO4, and Pr2-xCexCuO4 -- 3.1.2.4 Conclusions -- References -- 3.1.3 Properties of Bulk Materials -- 3.1.3.1 Irreversibility Fields of Bulk High-Tc Superconductors -- 3.1.3.2 Vortex Matter Phase Diagram of Bulk YBCO in an Extended Field Range up to 40 T -- 3.1.3.3 Critical Current Density -- 3.1.3.4 Flux Creep in Bulk YBCO -- 3.1.3.4.1 Flux Creep in HTS -- 3.1.3.4.2 Reduction of Flux Creep -- 3.1.3.5 Selected Properties of Bulk YBCO -- 3.1.3.5.1 Mechanical Properties -- 3.1.3.5.2 Thermodynamic and Thermal Properties -- References -- 3.2 Thin Films and Multilayers -- 3.2.1 Thin Film Deposition -- 3.2.1.1 Introduction -- 3.2.1.1.1 Material Requirements -- 3.2.1.1.2 Substrate Requirements -- 3.2.1.2 Deposition Techniques -- 3.2.1.2.1 PVD Techniques -- 3.2.1.2.2 CVD Technologies -- 3.2.1.2.3 CSD Techniques -- 3.2.1.3 HTS Film Growth and Characterization -- 3.2.1.3.1 Nucleation and Phase Formation -- 3.2.1.3.2 Heteroepitaxial Growth, Stress, and Defects -- 3.2.1.4 Concluding Remarks -- Acknowledgment -- References -- 3.3 Josephson Junctions and Circuits -- 3.3.1 LTS Josephson Junctions and Circuits -- 3.3.1.1 Introduction -- 3.3.1.2 Junction Characterization -- 3.3.1.3 Nb-Al/AlOx-Nb Junction Technology -- 3.3.1.3.1 General Aspects -- 3.3.1.3.2 Basic Processes of the Nb-Al/AlOx-Nb Technology -- 3.3.1.4 Circuits, Applications, and Resulting Requirements for Josephson Junctions -- 3.3.1.4.1 Josephson Voltage Standard -- 3.3.1.4.2 Superconducting Tunnel Junction -- 3.3.1.4.3 SIS Mixer -- 3.3.1.4.4 SQUID -- 3.3.1.4.5 Qubit -- 3.3.1.4.6 Mixed-Signal Circuit -- 3.3.1.4.7 RSFQ Digital Electronics -- References -- 3.3.2 HTS Josephson Junctions.
3.3.2.1 Introduction -- 3.3.2.2 Various Types of Junctions -- 3.3.2.3 Grain-Boundary Junctions -- 3.3.2.3.1 Bicrystal Junctions -- 3.3.2.3.2 Step-Edge Junctions -- 3.3.2.4 Ramp-Edge Junctions -- 3.3.2.5 Other Types of Junctions -- 3.3.2.6 Summary and Outlook -- References -- 3.4 Wires and Tapes -- 3.4.1 Powder-in-Tube Superconducting Wires: Fabrication, Properties, Applications, and Challenges -- 3.4.1.1 Overview of Powder-in-Tube (PIT) Superconducting Wires -- 3.4.1.1.1 Introduction -- 3.4.1.1.2 General Comments about PIT Wire Manufacture -- 3.4.1.2 Manufacturing, Heat Treatment, and Superconducting Performance of PIT Wires -- 3.4.1.2.1 Bi2Sr2CaCu2Ox (Bi-2212) Round Wire -- 3.4.1.2.2 (Bi,Pb)2Sr2Ca2Cu3Ox (Bi-2223) Tapes -- 3.4.1.2.3 Nb3Sn -- 3.4.1.2.4 MgB2 -- 3.4.1.2.5 Iron-Based Superconductors (FBS) -- 3.4.1.3 Strain Sensitivity of PIT Superconductor Wires -- 3.4.1.4 Successful Applications Using PIT Wires, Remaining Challenges, and PIT Wires in the Future -- Acknowledgments -- References -- 3.4.2 YBCO-Coated Conductors -- 3.4.2.1 Introduction -- 3.4.2.2 RABiTS and IBAD Technology -- 3.4.2.3 Simplified IBAD MgO Template Based on Chemical Solution Processed Al2O3 -- 3.4.2.4 Current Status of 2G HTS Wires -- 3.4.2.5 Future Outlook -- Acknowledgments -- References -- 3.5 Cooling -- 3.5.1 Fluid Cooling -- 3.5.1.1 Introduction -- 3.5.1.2 Bath Cooling -- 3.5.1.2.1 Principle -- 3.5.1.2.2 Heat Removal in a Bath -- 3.5.1.2.3 Heat Transfer from a Solid Surface to a Bath -- 3.5.1.3 Internal Cooling -- 3.5.1.3.1 Heat Removal from an Internally Cooled Loop -- 3.5.1.3.2 Mass Flow and Circulator Mechanisms -- 3.5.1.3.3 Heat Transfer in Internal Flows -- 3.5.1.3.4 Helium Expulsion -- 3.5.1.3.5 HeII Cooling -- References -- 3.5.2 Cryocoolers -- 3.5.2.1 Motivation -- 3.5.2.1.1 The Principle of "Invisible" Cryogenics -- 3.5.2.1.2 Pros and Cons.
3.5.2.2 Classical Cryocoolers.
Summary: This wide-ranging presentation of applied superconductivity, from fundamentals and materials right up to the details of many applications, is an essential reference for physicists and engineers in academic research as well as in industry. Readers looking for a comprehensive overview on basic effects related to superconductivity and superconducting materials will expand their knowledge and understanding of both low and high Tc superconductors with respect to their application. Technology, preparation and characterization are covered for bulk, single crystals, thins fi lms as well as electronic devices, wires and tapes. The main benefit of this work lies in its broad coverage of significant applications in magnets, power engineering, electronics, sensors and quantum metrology. The reader will find information on superconducting magnets for diverse applications like particle physics, fusion research, medicine, and biomagnetism as well as materials processing. SQUIDs and their usage in medicine or geophysics are thoroughly covered, as are superconducting radiation and particle detectors, aspects on superconductor digital electronics, leading readers to quantum computing and new devices.
Item type Current location Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan
Available EBKAF-N0001723
Ebrary Ebrary Algeria
Available
Ebrary Ebrary Cyprus
Available
Ebrary Ebrary Egypt
Available
Ebrary Ebrary Libya
Available
Ebrary Ebrary Morocco
Available
Ebrary Ebrary Nepal
Available EBKNP-N0001723
Ebrary Ebrary Sudan

Access a wide range of magazines and books using Pressreader and Ebook central.

Enjoy your reading, British Council Sudan.

Available
Ebrary Ebrary Tunisia
Available
Total holds: 0

Intro -- Applied Superconductivity -- Contents -- Conductorart by Claus Grupen (drawing) -- SQUIDart by Claus Grupen (drawing) -- Preface -- List of Contributors -- Volume 1 -- Chapter 1 Fundamentals -- 1.1 Superconductivity -- 1.1.1 Basic Properties and Parameters of Superconductors -- 1.1.1.1 Superconducting Transition and Loss of DC Resistance -- 1.1.1.2 Ideal Diamagnetism, Flux Quantization, and Critical Fields -- 1.1.1.3 The Origin of Flux Quantization, London Penetration Depth and Ginzburg-Landau Coherence Length -- 1.1.1.4 Critical Currents -- References -- 1.1.2 Review on Superconducting Materials -- 1.1.2.1 Introduction -- 1.1.2.2 Cuprate High-Temperature Superconductors -- 1.1.2.3 Other Oxide Superconductors -- 1.1.2.4 Iron-Based Superconductors -- 1.1.2.5 Heavy Fermion Superconductors -- 1.1.2.6 Organic and Other Carbon-Based Superconductors -- 1.1.2.7 Borides and Borocarbides -- References -- 1.2 Main Related Effects -- 1.2.1 Proximity Effect -- 1.2.1.1 Introduction -- 1.2.1.2 Metal-Insulator Contact -- 1.2.1.3 Normal Metal-Superconductor Contact -- 1.2.1.4 Ferromagnetic Metal-Superconductor Contact -- 1.2.1.5 New Perspectives and New Challenges -- 1.2.1.6 Summary -- References -- 1.2.2 Tunneling and Superconductivity -- 1.2.2.1 Introduction -- 1.2.2.2 Normal/Insulator/Normal Tunnel Junctions -- 1.2.2.3 Normal/Insulator/Superconducting Tunnel Junctions -- 1.2.2.4 Superconductor/Insulator/Superconducting Tunnel Junctions -- 1.2.2.5 Superconducting Quantum Interference Devices (SQUIDs) -- 1.2.2.6 Phonon Structure -- 1.2.2.7 Geometrical Resonances -- 1.2.2.8 Scanning Tunneling Microscopy -- 1.2.2.9 Charging Effects -- References -- 1.2.3 Flux Pinning -- 1.2.3.1 Introduction -- 1.2.3.2 Flux Lines, Flux Motion, and Dissipation -- 1.2.3.3 Sources of Flux Pinning -- 1.2.3.4 Flux Pinning in Technological Superconductors.

1.2.3.5 Experimental Determination of Pinning Forces -- 1.2.3.6 Regimes of Flux Motion -- 1.2.3.7 Limitations on Core Pinning Efficacy -- 1.2.3.8 Magnetic Pinning of Flux Lines -- 1.2.3.9 Flux Pinning Anisotropy -- 1.2.3.10 Maximum Entropy Treatment of Flux Pinning -- References -- 1.2.4 AC Losses and Numerical Modeling of Superconductors -- 1.2.4.1 Introduction -- 1.2.4.2 General Features of AC Loss Characteristics -- 1.2.4.3 Measuring AC Losses -- 1.2.4.3.1 Transport Losses -- 1.2.4.3.2 Magnetization Losses -- 1.2.4.3.3 Combination of Transport and Magnetization AC Losses -- 1.2.4.4 Computing AC Losses -- 1.2.4.4.1 Analytical Computation -- 1.2.4.4.2 Numerical Computation -- References -- Chapter 2 Superconducting Materials -- 2.1 Low-Temperature Superconductors -- 2.1.1 Metals, Alloys, and Intermetallic Compounds -- 2.1.1.1 Introduction -- 2.1.1.2 Type I and Type II Superconductor Elements and High-Field Alloys -- 2.1.1.2.1 Fundamental Superconductor Properties -- 2.1.1.2.2 Elemental Superconductors and Their Applications -- 2.1.1.2.3 The Effect of Alloying -- 2.1.1.3 Superconducting Intermetallic Compounds -- 2.1.1.4 Pinning in Hard Type II Superconductors -- 2.1.1.5 Design Principles of Technical Conductors -- 2.1.1.5.1 Electromagnetic Considerations -- 2.1.1.5.2 Mechanical Properties -- 2.1.1.5.3 Co-Workability and Compatibility of Wire Components -- 2.1.1.5.4 Cost Aspects -- 2.1.1.6 Wire Manufacturing Routes and Properties -- 2.1.1.6.1 NbTi Wires -- 2.1.1.6.2 Nb3Sn -- 2.1.1.7 Built-Up and Cabled Conductors -- 2.1.1.7.1 Wire-in-Channel (WiC) -- 2.1.1.7.2 Cabled Conductors -- 2.1.1.8 Concluding Remarks -- Acknowledgments -- References -- 2.1.2 Magnesium Diboride -- 2.1.2.1 Introduction -- 2.1.2.2 Intrinsic and Extrinsic Properties of MgB2 -- 2.1.2.3 Sample Preparation -- 2.1.2.3.1 MgB2 Phase Diagram and Polycrystals Synthesis.

2.1.2.3.2 MgB2 Single Crystals -- 2.1.2.3.3 MgB2 Thin Films -- 2.1.2.4 Applications of MgB2 -- 2.1.2.4.1 Wires and Tapes -- 2.1.2.4.2 Electronic Applications -- 2.1.2.5 Summary and Outlook -- References -- 2.2 High-Temperature Superconductors -- 2.2.1 Cuprate High-Temperature Superconductors -- 2.2.1.1 Introduction -- 2.2.1.2 Structural Aspects -- 2.2.1.3 Metallurgical Aspects -- 2.2.1.4 Structure and Tc -- 2.2.1.5 Superconductive Coupling -- References -- 2.2.2 Iron-Based Superconductors: Materials Aspects for Applications -- 2.2.2.1 Introduction -- 2.2.2.2 General Aspects of Fe-Based Superconductors -- 2.2.2.3 Material Preparation -- 2.2.2.4 Superconducting Properties -- 2.2.2.4.1 Critical Temperature Tc -- 2.2.2.4.2 Critical Fields and Characteristic Lengths -- 2.2.2.4.3 Critical Current Density Jc -- 2.2.2.5 Critical Current Pinning -- 2.2.2.6 Grain Boundaries -- 2.2.2.7 Wires and Tapes -- 2.2.2.8 Coated Conductors -- 2.2.2.9 Electronic Applications -- 2.2.2.10 Summary -- References -- Chapter 3 Technology, Preparation, and Characterization -- 3.1 Bulk Materials -- 3.1.1 Preparation of Bulk and Textured Superconductors -- 3.1.1.1 Introduction -- 3.1.1.2 Melt Processed REBCO -- 3.1.1.2.1 Process Steps -- 3.1.1.2.2 Melt Processing Thermodynamics -- 3.1.1.2.3 Powder Compacting -- 3.1.1.2.4 Texture Process -- 3.1.1.2.5 Single Grain Fabrication -- 3.1.1.2.6 Mechanical Properties -- 3.1.1.2.7 Doping Strategy -- 3.1.1.3 Characterization -- 3.1.1.3.1 Electromagnetic Force -- 3.1.1.3.2 Magnetization and Field Mapping Technique of Bulk Superconductors -- 3.1.1.3.3 Trapped Field Magnetic Flux Density -- 3.1.1.3.4 Multiseeded Bulk Characterization -- 3.1.1.3.5 Comparison of the REBCO Bulk Materials -- References -- 3.1.2 Single crystal growth of the high temperature superconducting cuprates.

3.1.2.1 General Problems in the Crystal Growth of the High Tc Cuprate Superconductors -- 3.1.2.2 YBa2Cu3O7-δ', YBa2Cu4O8, and REBa2Cu3O7-δ (RE, Rare Earth Element) -- 3.1.2.3 The 214-Compounds La2-xSrxCuO4, Nd2-xCexCuO4, and Pr2-xCexCuO4 -- 3.1.2.4 Conclusions -- References -- 3.1.3 Properties of Bulk Materials -- 3.1.3.1 Irreversibility Fields of Bulk High-Tc Superconductors -- 3.1.3.2 Vortex Matter Phase Diagram of Bulk YBCO in an Extended Field Range up to 40 T -- 3.1.3.3 Critical Current Density -- 3.1.3.4 Flux Creep in Bulk YBCO -- 3.1.3.4.1 Flux Creep in HTS -- 3.1.3.4.2 Reduction of Flux Creep -- 3.1.3.5 Selected Properties of Bulk YBCO -- 3.1.3.5.1 Mechanical Properties -- 3.1.3.5.2 Thermodynamic and Thermal Properties -- References -- 3.2 Thin Films and Multilayers -- 3.2.1 Thin Film Deposition -- 3.2.1.1 Introduction -- 3.2.1.1.1 Material Requirements -- 3.2.1.1.2 Substrate Requirements -- 3.2.1.2 Deposition Techniques -- 3.2.1.2.1 PVD Techniques -- 3.2.1.2.2 CVD Technologies -- 3.2.1.2.3 CSD Techniques -- 3.2.1.3 HTS Film Growth and Characterization -- 3.2.1.3.1 Nucleation and Phase Formation -- 3.2.1.3.2 Heteroepitaxial Growth, Stress, and Defects -- 3.2.1.4 Concluding Remarks -- Acknowledgment -- References -- 3.3 Josephson Junctions and Circuits -- 3.3.1 LTS Josephson Junctions and Circuits -- 3.3.1.1 Introduction -- 3.3.1.2 Junction Characterization -- 3.3.1.3 Nb-Al/AlOx-Nb Junction Technology -- 3.3.1.3.1 General Aspects -- 3.3.1.3.2 Basic Processes of the Nb-Al/AlOx-Nb Technology -- 3.3.1.4 Circuits, Applications, and Resulting Requirements for Josephson Junctions -- 3.3.1.4.1 Josephson Voltage Standard -- 3.3.1.4.2 Superconducting Tunnel Junction -- 3.3.1.4.3 SIS Mixer -- 3.3.1.4.4 SQUID -- 3.3.1.4.5 Qubit -- 3.3.1.4.6 Mixed-Signal Circuit -- 3.3.1.4.7 RSFQ Digital Electronics -- References -- 3.3.2 HTS Josephson Junctions.

3.3.2.1 Introduction -- 3.3.2.2 Various Types of Junctions -- 3.3.2.3 Grain-Boundary Junctions -- 3.3.2.3.1 Bicrystal Junctions -- 3.3.2.3.2 Step-Edge Junctions -- 3.3.2.4 Ramp-Edge Junctions -- 3.3.2.5 Other Types of Junctions -- 3.3.2.6 Summary and Outlook -- References -- 3.4 Wires and Tapes -- 3.4.1 Powder-in-Tube Superconducting Wires: Fabrication, Properties, Applications, and Challenges -- 3.4.1.1 Overview of Powder-in-Tube (PIT) Superconducting Wires -- 3.4.1.1.1 Introduction -- 3.4.1.1.2 General Comments about PIT Wire Manufacture -- 3.4.1.2 Manufacturing, Heat Treatment, and Superconducting Performance of PIT Wires -- 3.4.1.2.1 Bi2Sr2CaCu2Ox (Bi-2212) Round Wire -- 3.4.1.2.2 (Bi,Pb)2Sr2Ca2Cu3Ox (Bi-2223) Tapes -- 3.4.1.2.3 Nb3Sn -- 3.4.1.2.4 MgB2 -- 3.4.1.2.5 Iron-Based Superconductors (FBS) -- 3.4.1.3 Strain Sensitivity of PIT Superconductor Wires -- 3.4.1.4 Successful Applications Using PIT Wires, Remaining Challenges, and PIT Wires in the Future -- Acknowledgments -- References -- 3.4.2 YBCO-Coated Conductors -- 3.4.2.1 Introduction -- 3.4.2.2 RABiTS and IBAD Technology -- 3.4.2.3 Simplified IBAD MgO Template Based on Chemical Solution Processed Al2O3 -- 3.4.2.4 Current Status of 2G HTS Wires -- 3.4.2.5 Future Outlook -- Acknowledgments -- References -- 3.5 Cooling -- 3.5.1 Fluid Cooling -- 3.5.1.1 Introduction -- 3.5.1.2 Bath Cooling -- 3.5.1.2.1 Principle -- 3.5.1.2.2 Heat Removal in a Bath -- 3.5.1.2.3 Heat Transfer from a Solid Surface to a Bath -- 3.5.1.3 Internal Cooling -- 3.5.1.3.1 Heat Removal from an Internally Cooled Loop -- 3.5.1.3.2 Mass Flow and Circulator Mechanisms -- 3.5.1.3.3 Heat Transfer in Internal Flows -- 3.5.1.3.4 Helium Expulsion -- 3.5.1.3.5 HeII Cooling -- References -- 3.5.2 Cryocoolers -- 3.5.2.1 Motivation -- 3.5.2.1.1 The Principle of "Invisible" Cryogenics -- 3.5.2.1.2 Pros and Cons.

3.5.2.2 Classical Cryocoolers.

This wide-ranging presentation of applied superconductivity, from fundamentals and materials right up to the details of many applications, is an essential reference for physicists and engineers in academic research as well as in industry. Readers looking for a comprehensive overview on basic effects related to superconductivity and superconducting materials will expand their knowledge and understanding of both low and high Tc superconductors with respect to their application. Technology, preparation and characterization are covered for bulk, single crystals, thins fi lms as well as electronic devices, wires and tapes. The main benefit of this work lies in its broad coverage of significant applications in magnets, power engineering, electronics, sensors and quantum metrology. The reader will find information on superconducting magnets for diverse applications like particle physics, fusion research, medicine, and biomagnetism as well as materials processing. SQUIDs and their usage in medicine or geophysics are thoroughly covered, as are superconducting radiation and particle detectors, aspects on superconductor digital electronics, leading readers to quantum computing and new devices.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

to post a comment.