Amazon cover image
Image from Amazon.com

CMOS RFIC Engineering.

By: Series: Wiley Series in Microwave and Optical Engineering SerPublisher: Somerset : John Wiley & Sons, Incorporated, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (884 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118900475
Subject(s): Genre/Form: Additional physical formats: Print version:: CMOS RFIC EngineeringDDC classification:
  • 621.39732
LOC classification:
  • TK7874.78 -- .N47 2014eb
Online resources:
Contents:
Cover -- Contents -- Preface -- Chapter 1 Introduction -- Problems -- Chapter 2 Fundamentals of Electromagnetics -- 2.1 EM Field Parameters -- 2.2 Maxwell's Equations -- 2.3 Auxiliary Relations -- 2.3.1 Constitutive Relations -- 2.3.2 Current Relations -- 2.4 Sinusoidal Time-Varying Steady State -- 2.5 Boundary Conditions -- 2.5.1 General Boundary Conditions -- 2.5.2 Specific Boundary Conditions -- 2.6 Wave Equations -- 2.7 Power -- 2.8 Loss and Propagation Constant in Medium -- 2.9 Skin Depth -- 2.10 Surface Impedance -- Problems -- Chapter 3 Lumped Elements -- 3.1 Fundamentals of Lumped Elements -- 3.1.1 Basic Equations -- 3.2 Quality Factor of Lumped Elements -- 3.3 Modeling of Lumped Elements -- 3.4 Inductors -- 3.4.1 Inductor Configurations -- 3.4.2 Loss in Inductors -- 3.4.3 Equivalent-Circuit Models of Inductors -- 3.4.4 Resonance in Inductors -- 3.4.5 Quality Factor of Inductors -- 3.4.6 High Q Inductor Design Considerations -- 3.5 Lumped-Element Capacitors -- 3.5.1 Capacitor Configurations -- 3.5.2 Equivalent-Circuit Models of Capacitors -- 3.5.3 Resonance -- 3.5.4 Quality Factor -- 3.5.5 High Q Capacitor Design Considerations -- 3.6 Lumped-Element Resistors -- 3.6.1 Resistor Configurations -- 3.6.2 Basic Resistor Equations -- 3.6.3 Equivalent-Circuit Models of Resistors -- References -- Problems -- Chapter 4 Transmission Lines -- 4.1 Essentials of Transmission Lines -- 4.2 Transmission-Line Equations -- 4.2.1 General Transmission-Line Equations -- 4.2.2 Sinusoidal Steady-State Transmission-Line Equations -- 4.3 Transmission-Line Parameters -- 4.3.1 General Transmission Lines -- 4.3.2 Lossless Transmission Lines -- 4.3.3 Low Loss Transmission Lines -- 4.4 Per-Unit-Length Parameters R, L, C, and G -- 4.4.1 General Formulation -- 4.4.2 Formulation for Simple Transmission Lines -- 4.5 Dielectric and Conductor Losses in Transmission Lines.
4.5.1 Dielectric Attenuation Constant -- 4.5.2 Conductor Attenuation Constant -- 4.6 Dispersion and Distortion in Transmission Lines -- 4.6.1 Dispersion -- 4.6.2 Distortion -- 4.6.3 Distortion-Less Transmission Lines -- 4.7 Group Velocity -- 4.8 Impedance, Reflection Coefficients, and Standing-Wave Ratios -- 4.8.1 Impedance -- 4.8.2 Reflection Coefficients -- 4.8.3 Standing-Wave Ratio -- 4.8.4 Perfect Match and Total Reflection -- 4.8.5 Lossless Transmission Lines -- 4.9 Synthetic Transmission Lines -- 4.10 Tem and Quasi-Tem Transmission-Line Parameters -- 4.10.1 Static or Quasi-Static Analysis -- 4.10.2 Dynamic Analysis -- 4.11 Printed-Circuit Transmission Lines -- 4.11.1 Microstrip Line -- 4.11.2 Coplanar Waveguide -- 4.11.3 Coplanar Strips -- 4.11.4 Strip Line -- 4.11.5 Slot Line -- 4.11.6 Field Distributions -- 4.12 Transmission Lines in RFICs -- 4.12.1 Microstrip Line -- 4.12.2 Coplanar Waveguide -- 4.12.3 Coplanar Strips -- 4.12.4 Strip Line -- 4.12.5 Slot Line -- 4.12.6 Transitions and Junctions Between Transmission Lines -- 4.13 Multi-Conductor Transmission Lines -- 4.13.1 Transmission-Line Equations -- 4.13.2 Propagation Modes -- 4.13.3 Characteristic Impedance and Admittance Matrix -- 4.13.4 Mode Characteristic Impedances and Admittances -- 4.13.5 Impedance and Admittance Matrix -- 4.13.6 Lossless Multiconductor Transmission Lines -- References -- Problems -- Appendix 4: Transmission-Line Equations Derived From Maxwell's Equations -- Chapter 5 Resonators -- 5.1 Fundamentals of Resonators -- 5.1.1 Parallel Resonators -- 5.1.2 Series Resonators -- 5.2 Quality Factor -- 5.2.1 Parallel Resonators -- 5.2.2 Series Resonators -- 5.2.3 Unloaded Quality Factor -- 5.2.4 Loaded Quality Factor -- 5.2.5 Evaluation of and Relation between Unloaded and Loaded Quality Factors -- 5.3 Distributed Resonators -- 5.3.1 Quality-Factor Characteristics.
5.3.2 Transmission-Line Resonators -- 5.3.3 Waveguide Cavity Resonators -- 5.4 Resonator's Slope Parameters -- 5.5 Transformation of Resonators -- 5.5.1 Impedance and Admittance Inverters -- 5.5.2 Examples of Resonator Transformation -- References -- Problems -- Chapter 6 Impedance Matching -- 6.1 Basic Impedance Matching -- 6.1.1 Smith Chart -- 6.2 Design of Impedance-Matching Networks -- 6.2.1 Impedance-Matching Network Topologies -- 6.2.2 Impedance Transformation through Series and Shunt Inductor and Capacitor -- 6.2.3 Examples of Impedance-Matching Network Design -- 6.2.4 Transmission-Line Impedance-Matching Networks -- 6.3 Kuroda Identities -- References -- Problems -- Chapter 7 Scattering Parameters -- 7.1 Multiport Networks -- 7.2 Impedance Matrix -- 7.3 Admittance Matrix -- 7.4 Impedance and Admittance Matrix in RF Circuit Analysis -- 7.4.1 T-Network Representation of Two-Port RF Circuits -- 7.4.2 π-Network Representation of Two-Port RF Circuits -- 7.5 Scattering Matrix -- 7.5.1 Fundamentals of Scattering Matrix -- 7.5.2 Examples for Scattering Parameters -- 7.5.3 Effect of Reference-Plane Change on Scattering Matrix -- 7.5.4 Return Loss, Insertion Loss, and Gain -- 7.6 Chain Matrix -- 7.7 Scattering Transmission Matrix -- 7.8 Conversion Between Two-Port Parameters -- 7.8.1 Conversion from [Z] to [ABCD] -- References -- Problems -- Chapter 8 RF Passive Components -- 8.1 Characteristics of Multiport RF Passive Components -- 8.1.1 Characteristics of Three-Port Components -- 8.1.2 Characteristics of Four-Port Components -- 8.2 Directional Couplers -- 8.2.1 Fundamentals of Directional Couplers -- 8.2.2 Parallel-Coupled Directional Couplers -- 8.3 Hybrids -- 8.3.1 Hybrid T -- 8.3.2 Ring Hybrid -- 8.3.3 Branch-Line Coupler -- 8.4 Power Dividers -- 8.4.1 Even-Mode Analysis -- 8.4.2 Odd-Mode Analysis -- 8.4.3 Superimposition of Even and Odd Modes.
8.5 Filters -- 8.5.1 Low Pass Filter -- 8.5.2 High Pass Filter Design -- 8.5.3 Band-Pass Filter Design -- 8.5.4 Band-Stop Filter Design -- 8.5.5 Filter Design Using Impedance and Admittance Inverters -- References -- Problems -- Chapter 9 Fundamentals of CMOS Transistors for RFIC Design -- 9.1 MOSFET Basics -- 9.1.1 MOSFET Structure -- 9.1.2 MOSFET Operation -- 9.2 MOSFET Models -- 9.2.1 Physics-Based Models -- 9.2.2 Empirical Models -- 9.2.3 SPICE Models -- 9.2.4 Passive MOSFET Models -- 9.3 Important MOSFET Frquencies -- 9.3.1 fT -- 9.3.2 fmax -- 9.4 Other Important MOSFET Parameters -- 9.5 Varactor Diodes -- 9.5.1 Varactor Structure and Operation -- 9.5.2 Varactor Model and Characteristics -- References -- Problems -- Chapter 10 Stability -- 10.1 Fundamentals of Stability -- 10.2 Determination of Stable and Unstable Regions -- 10.3 Stability Consideration for N-Port Circuits -- References -- Problems -- Chapter 11 Amplifiers -- 11.1 Fundamentals of Amplifier Design -- 11.1.1 Power Gain -- 11.1.2 Gain Design -- 11.2 Low Noise Amplifiers -- 11.2.1 Noise Figure Fundamentals -- 11.2.2 MOSFET Noise Parameters -- 11.2.3 Noise Figure of Multistage Amplifiers -- 11.2.4 Noise-Figure Design -- 11.2.5 Design for Gain and Noise Figure -- 11.3 Design Examples -- 11.3.1 Unilateral Amplifier Design -- 11.3.2 Bilateral Amplifier Design -- 11.4 Power Amplifiers -- 11.4.1 Power-Amplifier Parameters -- 11.4.2 Power-Amplifier Types -- 11.5 Balanced Amplifiers -- 11.5.1 Differential Amplifiers -- 11.5.2 Ninety-Degree Balanced Amplifiers -- 11.5.3 Push-Pull Amplifiers -- 11.6 Broadband Amplifiers -- 11.6.1 Compensated Matching Networks -- 11.6.2 Distributed Amplifiers -- 11.6.3 Feedback Amplifiers -- 11.6.4 Cascoded Common-Source Amplifiers -- 11.7 Current Mirrors -- 11.7.1 Basic Current Mirror -- 11.7.2 Cascode Current Mirror -- References -- Problems -- References.
Chapter 12 Oscillators -- 12.1 Principle of Oscillation -- 12.1.1 Oscillation Conditions -- 12.1.2 Oscillation Determination -- 12.2 Fundamentals of Oscillator Design -- 12.2.1 Basic Oscillators -- 12.2.2 Feedback Oscillators -- 12.3 Phase Noise -- 12.3.1 Fundamentals of Phase Noise -- 12.3.2 Phase Noise Modeling -- 12.3.3 Low Phase-Noise Design Consideration -- 12.3.4 Effects of Phase Noise on Systems -- 12.3.5 Analysis Example of Effects of Phase Noise -- 12.4 Oscillator Circuits -- 12.4.1 Cross-Coupled Oscillators -- 12.4.2 Distributed Oscillators -- 12.4.3 Push-Push Oscillators -- References -- Problems -- Chapter 13 Mixers -- 13.1 Fundamentals of Mixers -- 13.1.1 Mixing Principle -- 13.1.2 Mixer Parameters -- 13.2 Mixer Types -- 13.2.1 Single-Ended Mixer -- 13.2.2 Single-Balanced Mixer -- 13.2.3 Double-Balanced Mixer -- 13.2.4 Doubly Double-Balanced Mixer -- 13.3 Other Mixers -- 13.3.1 Passive Mixer -- 13.3.2 Image-Reject Mixer -- 13.3.3 Quadrature Mixer -- 13.3.4 Distributed Mixer -- 13.4 Mixer Analysis and Design -- 13.4.1 Switching Mixer Fundamental -- 13.4.2 Single-Ended Mixer -- 13.4.3 Single-Balanced Mixer -- 13.4.4 Double-Balanced Mixer -- 13.4.5 Source Degeneration in Mixer Design -- 13.5 Sampling Mixer -- 13.5.1 Fundamentals of Sampling -- 13.5.2 Sampling Theory -- 13.5.3 Sampling Process -- 13.5.4 Sample and Hold -- 13.5.5 Sampling Switch -- 13.5.6 Integrated Sampling Mixer -- References -- Problems -- Chapter 14 Switches -- 14.1 Fundamentals of Switches -- 14.1.1 Switch Operation -- 14.1.2 Important Parameters -- 14.2 Analysis of Switching MOSFET -- 14.2.1 Analysis of Shunt Transistor -- 14.2.2 Analysis of Series Transistor -- 14.2.3 Analysis of Combined Series and Shunt Transistors -- 14.2.4 Selection of MOSFET -- 14.2.5 Design Consideration for Improved Insertion Loss and Isolation -- 14.3 SPST Switches.
14.3.1 SPST Switch Employing Two Parallel MOSFETs.
Summary: Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs. Provides essential knowledge in EM and microwave engineering, passive and active RFICs, RFIC analysis and design techniques, and RF systems vital for RFIC students and engineers Blends analog and microwave engineering approaches for RFIC design at high frequencies Includes problems at the end of each chapter.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan Available EBKAF-N0001542
Ebrary Ebrary Algeria Available
Ebrary Ebrary Cyprus Available
Ebrary Ebrary Egypt Available
Ebrary Ebrary Libya Available
Ebrary Ebrary Morocco Available
Ebrary Ebrary Nepal Available EBKNP-N0001542
Ebrary Ebrary Sudan Available
Ebrary Ebrary Tunisia Available
Total holds: 0

Cover -- Contents -- Preface -- Chapter 1 Introduction -- Problems -- Chapter 2 Fundamentals of Electromagnetics -- 2.1 EM Field Parameters -- 2.2 Maxwell's Equations -- 2.3 Auxiliary Relations -- 2.3.1 Constitutive Relations -- 2.3.2 Current Relations -- 2.4 Sinusoidal Time-Varying Steady State -- 2.5 Boundary Conditions -- 2.5.1 General Boundary Conditions -- 2.5.2 Specific Boundary Conditions -- 2.6 Wave Equations -- 2.7 Power -- 2.8 Loss and Propagation Constant in Medium -- 2.9 Skin Depth -- 2.10 Surface Impedance -- Problems -- Chapter 3 Lumped Elements -- 3.1 Fundamentals of Lumped Elements -- 3.1.1 Basic Equations -- 3.2 Quality Factor of Lumped Elements -- 3.3 Modeling of Lumped Elements -- 3.4 Inductors -- 3.4.1 Inductor Configurations -- 3.4.2 Loss in Inductors -- 3.4.3 Equivalent-Circuit Models of Inductors -- 3.4.4 Resonance in Inductors -- 3.4.5 Quality Factor of Inductors -- 3.4.6 High Q Inductor Design Considerations -- 3.5 Lumped-Element Capacitors -- 3.5.1 Capacitor Configurations -- 3.5.2 Equivalent-Circuit Models of Capacitors -- 3.5.3 Resonance -- 3.5.4 Quality Factor -- 3.5.5 High Q Capacitor Design Considerations -- 3.6 Lumped-Element Resistors -- 3.6.1 Resistor Configurations -- 3.6.2 Basic Resistor Equations -- 3.6.3 Equivalent-Circuit Models of Resistors -- References -- Problems -- Chapter 4 Transmission Lines -- 4.1 Essentials of Transmission Lines -- 4.2 Transmission-Line Equations -- 4.2.1 General Transmission-Line Equations -- 4.2.2 Sinusoidal Steady-State Transmission-Line Equations -- 4.3 Transmission-Line Parameters -- 4.3.1 General Transmission Lines -- 4.3.2 Lossless Transmission Lines -- 4.3.3 Low Loss Transmission Lines -- 4.4 Per-Unit-Length Parameters R, L, C, and G -- 4.4.1 General Formulation -- 4.4.2 Formulation for Simple Transmission Lines -- 4.5 Dielectric and Conductor Losses in Transmission Lines.

4.5.1 Dielectric Attenuation Constant -- 4.5.2 Conductor Attenuation Constant -- 4.6 Dispersion and Distortion in Transmission Lines -- 4.6.1 Dispersion -- 4.6.2 Distortion -- 4.6.3 Distortion-Less Transmission Lines -- 4.7 Group Velocity -- 4.8 Impedance, Reflection Coefficients, and Standing-Wave Ratios -- 4.8.1 Impedance -- 4.8.2 Reflection Coefficients -- 4.8.3 Standing-Wave Ratio -- 4.8.4 Perfect Match and Total Reflection -- 4.8.5 Lossless Transmission Lines -- 4.9 Synthetic Transmission Lines -- 4.10 Tem and Quasi-Tem Transmission-Line Parameters -- 4.10.1 Static or Quasi-Static Analysis -- 4.10.2 Dynamic Analysis -- 4.11 Printed-Circuit Transmission Lines -- 4.11.1 Microstrip Line -- 4.11.2 Coplanar Waveguide -- 4.11.3 Coplanar Strips -- 4.11.4 Strip Line -- 4.11.5 Slot Line -- 4.11.6 Field Distributions -- 4.12 Transmission Lines in RFICs -- 4.12.1 Microstrip Line -- 4.12.2 Coplanar Waveguide -- 4.12.3 Coplanar Strips -- 4.12.4 Strip Line -- 4.12.5 Slot Line -- 4.12.6 Transitions and Junctions Between Transmission Lines -- 4.13 Multi-Conductor Transmission Lines -- 4.13.1 Transmission-Line Equations -- 4.13.2 Propagation Modes -- 4.13.3 Characteristic Impedance and Admittance Matrix -- 4.13.4 Mode Characteristic Impedances and Admittances -- 4.13.5 Impedance and Admittance Matrix -- 4.13.6 Lossless Multiconductor Transmission Lines -- References -- Problems -- Appendix 4: Transmission-Line Equations Derived From Maxwell's Equations -- Chapter 5 Resonators -- 5.1 Fundamentals of Resonators -- 5.1.1 Parallel Resonators -- 5.1.2 Series Resonators -- 5.2 Quality Factor -- 5.2.1 Parallel Resonators -- 5.2.2 Series Resonators -- 5.2.3 Unloaded Quality Factor -- 5.2.4 Loaded Quality Factor -- 5.2.5 Evaluation of and Relation between Unloaded and Loaded Quality Factors -- 5.3 Distributed Resonators -- 5.3.1 Quality-Factor Characteristics.

5.3.2 Transmission-Line Resonators -- 5.3.3 Waveguide Cavity Resonators -- 5.4 Resonator's Slope Parameters -- 5.5 Transformation of Resonators -- 5.5.1 Impedance and Admittance Inverters -- 5.5.2 Examples of Resonator Transformation -- References -- Problems -- Chapter 6 Impedance Matching -- 6.1 Basic Impedance Matching -- 6.1.1 Smith Chart -- 6.2 Design of Impedance-Matching Networks -- 6.2.1 Impedance-Matching Network Topologies -- 6.2.2 Impedance Transformation through Series and Shunt Inductor and Capacitor -- 6.2.3 Examples of Impedance-Matching Network Design -- 6.2.4 Transmission-Line Impedance-Matching Networks -- 6.3 Kuroda Identities -- References -- Problems -- Chapter 7 Scattering Parameters -- 7.1 Multiport Networks -- 7.2 Impedance Matrix -- 7.3 Admittance Matrix -- 7.4 Impedance and Admittance Matrix in RF Circuit Analysis -- 7.4.1 T-Network Representation of Two-Port RF Circuits -- 7.4.2 π-Network Representation of Two-Port RF Circuits -- 7.5 Scattering Matrix -- 7.5.1 Fundamentals of Scattering Matrix -- 7.5.2 Examples for Scattering Parameters -- 7.5.3 Effect of Reference-Plane Change on Scattering Matrix -- 7.5.4 Return Loss, Insertion Loss, and Gain -- 7.6 Chain Matrix -- 7.7 Scattering Transmission Matrix -- 7.8 Conversion Between Two-Port Parameters -- 7.8.1 Conversion from [Z] to [ABCD] -- References -- Problems -- Chapter 8 RF Passive Components -- 8.1 Characteristics of Multiport RF Passive Components -- 8.1.1 Characteristics of Three-Port Components -- 8.1.2 Characteristics of Four-Port Components -- 8.2 Directional Couplers -- 8.2.1 Fundamentals of Directional Couplers -- 8.2.2 Parallel-Coupled Directional Couplers -- 8.3 Hybrids -- 8.3.1 Hybrid T -- 8.3.2 Ring Hybrid -- 8.3.3 Branch-Line Coupler -- 8.4 Power Dividers -- 8.4.1 Even-Mode Analysis -- 8.4.2 Odd-Mode Analysis -- 8.4.3 Superimposition of Even and Odd Modes.

8.5 Filters -- 8.5.1 Low Pass Filter -- 8.5.2 High Pass Filter Design -- 8.5.3 Band-Pass Filter Design -- 8.5.4 Band-Stop Filter Design -- 8.5.5 Filter Design Using Impedance and Admittance Inverters -- References -- Problems -- Chapter 9 Fundamentals of CMOS Transistors for RFIC Design -- 9.1 MOSFET Basics -- 9.1.1 MOSFET Structure -- 9.1.2 MOSFET Operation -- 9.2 MOSFET Models -- 9.2.1 Physics-Based Models -- 9.2.2 Empirical Models -- 9.2.3 SPICE Models -- 9.2.4 Passive MOSFET Models -- 9.3 Important MOSFET Frquencies -- 9.3.1 fT -- 9.3.2 fmax -- 9.4 Other Important MOSFET Parameters -- 9.5 Varactor Diodes -- 9.5.1 Varactor Structure and Operation -- 9.5.2 Varactor Model and Characteristics -- References -- Problems -- Chapter 10 Stability -- 10.1 Fundamentals of Stability -- 10.2 Determination of Stable and Unstable Regions -- 10.3 Stability Consideration for N-Port Circuits -- References -- Problems -- Chapter 11 Amplifiers -- 11.1 Fundamentals of Amplifier Design -- 11.1.1 Power Gain -- 11.1.2 Gain Design -- 11.2 Low Noise Amplifiers -- 11.2.1 Noise Figure Fundamentals -- 11.2.2 MOSFET Noise Parameters -- 11.2.3 Noise Figure of Multistage Amplifiers -- 11.2.4 Noise-Figure Design -- 11.2.5 Design for Gain and Noise Figure -- 11.3 Design Examples -- 11.3.1 Unilateral Amplifier Design -- 11.3.2 Bilateral Amplifier Design -- 11.4 Power Amplifiers -- 11.4.1 Power-Amplifier Parameters -- 11.4.2 Power-Amplifier Types -- 11.5 Balanced Amplifiers -- 11.5.1 Differential Amplifiers -- 11.5.2 Ninety-Degree Balanced Amplifiers -- 11.5.3 Push-Pull Amplifiers -- 11.6 Broadband Amplifiers -- 11.6.1 Compensated Matching Networks -- 11.6.2 Distributed Amplifiers -- 11.6.3 Feedback Amplifiers -- 11.6.4 Cascoded Common-Source Amplifiers -- 11.7 Current Mirrors -- 11.7.1 Basic Current Mirror -- 11.7.2 Cascode Current Mirror -- References -- Problems -- References.

Chapter 12 Oscillators -- 12.1 Principle of Oscillation -- 12.1.1 Oscillation Conditions -- 12.1.2 Oscillation Determination -- 12.2 Fundamentals of Oscillator Design -- 12.2.1 Basic Oscillators -- 12.2.2 Feedback Oscillators -- 12.3 Phase Noise -- 12.3.1 Fundamentals of Phase Noise -- 12.3.2 Phase Noise Modeling -- 12.3.3 Low Phase-Noise Design Consideration -- 12.3.4 Effects of Phase Noise on Systems -- 12.3.5 Analysis Example of Effects of Phase Noise -- 12.4 Oscillator Circuits -- 12.4.1 Cross-Coupled Oscillators -- 12.4.2 Distributed Oscillators -- 12.4.3 Push-Push Oscillators -- References -- Problems -- Chapter 13 Mixers -- 13.1 Fundamentals of Mixers -- 13.1.1 Mixing Principle -- 13.1.2 Mixer Parameters -- 13.2 Mixer Types -- 13.2.1 Single-Ended Mixer -- 13.2.2 Single-Balanced Mixer -- 13.2.3 Double-Balanced Mixer -- 13.2.4 Doubly Double-Balanced Mixer -- 13.3 Other Mixers -- 13.3.1 Passive Mixer -- 13.3.2 Image-Reject Mixer -- 13.3.3 Quadrature Mixer -- 13.3.4 Distributed Mixer -- 13.4 Mixer Analysis and Design -- 13.4.1 Switching Mixer Fundamental -- 13.4.2 Single-Ended Mixer -- 13.4.3 Single-Balanced Mixer -- 13.4.4 Double-Balanced Mixer -- 13.4.5 Source Degeneration in Mixer Design -- 13.5 Sampling Mixer -- 13.5.1 Fundamentals of Sampling -- 13.5.2 Sampling Theory -- 13.5.3 Sampling Process -- 13.5.4 Sample and Hold -- 13.5.5 Sampling Switch -- 13.5.6 Integrated Sampling Mixer -- References -- Problems -- Chapter 14 Switches -- 14.1 Fundamentals of Switches -- 14.1.1 Switch Operation -- 14.1.2 Important Parameters -- 14.2 Analysis of Switching MOSFET -- 14.2.1 Analysis of Shunt Transistor -- 14.2.2 Analysis of Series Transistor -- 14.2.3 Analysis of Combined Series and Shunt Transistors -- 14.2.4 Selection of MOSFET -- 14.2.5 Design Consideration for Improved Insertion Loss and Isolation -- 14.3 SPST Switches.

14.3.1 SPST Switch Employing Two Parallel MOSFETs.

Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs. Provides essential knowledge in EM and microwave engineering, passive and active RFICs, RFIC analysis and design techniques, and RF systems vital for RFIC students and engineers Blends analog and microwave engineering approaches for RFIC design at high frequencies Includes problems at the end of each chapter.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.