Amazon cover image
Image from Amazon.com

Multicomponent Reactions : Concepts and Applications for Design and Synthesis.

By: Contributor(s): Publisher: New York : John Wiley & Sons, Incorporated, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (526 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118864005
Subject(s): Genre/Form: Additional physical formats: Print version:: Multicomponent Reactions : Concepts and Applications for Design and SynthesisDDC classification:
  • 547/.2
LOC classification:
  • QD501 -- .M868 2015eb
Online resources:
Contents:
Intro -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- List of Abbrevations -- Chapter 1 Introduction: Multicomponent Strategies -- General Introduction -- 1.1 Basic Concepts -- 1.1.1 Clarifying Terminology: One-Pot, Domino/Cascade, Tandem, and MCRs -- 1.1.2 Using Rational Design to Discover New MCRs -- 1.1.3 Discovering New MCRs with Automated Combinatorial Reaction Finding -- 1.1.4 Computational and Analytical Tools to Study MCRs -- 1.1.5 Diversity-Oriented Synthesis and Biology-Oriented Synthesis -- 1.1.6 Optimization of MCRs -- 1.2 Catalysis in MCRs and Various Synthetic Approaches -- 1.2.1 Organocatalysis in MCRs -- 1.2.2 Organometallic Catalysis in MCRs -- 1.2.3 Biocatalysis in MCRs -- 1.2.4 Combining Different Types of Catalysis -- 1.2.5 Other Methods -- 1.3 Green Chemistry -- 1.3.1 Atom Economy -- 1.3.2 Using Green Solvents -- 1.3.3 Solventless MCRs -- 1.3.4 Heterogeneous Catalysis in MCRs -- 1.4 Importance and Evolution -- References -- Chapter 2 Organocatalytic Asymmetric Multicomponent Reactions -- 2.1 Introduction -- 2.2 Three-Component Mannich Reaction -- 2.3 Cycloaddition Reaction -- 2.4 Organocatalytic Multicomponent Domino Asymmetric Reactions -- 2.4.1 Michael-Type Multicomponent Process: Cyclic Carbon Frameworks -- 2.4.2 Miscellaneous Domino Reactions -- 2.5 Development of Drug Intermediates -- 2.6 Miscellaneous Reaction -- 2.7 Conclusions -- References -- Chapter 3 Metal-Catalyzed Multicomponent Reactions -- 3.1 Introduction -- 3.2 Palladium-Catalyzed MCRs -- 3.2.1 Palladium-Catalyzed Carbonylation Reactions -- 3.2.2 Palladium-Catalyzed MCRs Involving Isocyanides -- 3.2.3 Carbopalladation of Unsaturated C─C π-Components -- 3.2.4 Amines as Building Blocks -- 3.3 Nickel-Catalyzed MCRs -- 3.3.1 Nickel-Catalyzed Cross-Trimerization of Alkynes -- 3.3.2 Nickel-Catalyzed π-Systems Couplings.
3.3.3 Ni-Catalyzed Reductive Conjugate Addition -- 3.4 Group 11 Metal-Catalyzed MCRs -- 3.4.1 Copper-Catalyzed Azide-Alkyne Cycloaddition -- 3.4.2 A3-Coupling -- 3.4.3 Miscellaneous -- 3.5 Rhodium-Catalyzed MCRs -- 3.5.1 Rhodium-Catalyzed Mcrs via Onium Ylide Intermediates -- 3.5.2 Rhodium-Catalyzed Three-Component Cross-Addition Reactions -- 3.6 Group 8 Metal-Catalyzed MCRs -- 3.6.1 Iron-Catalyzed MCRs -- 3.6.2 Ruthenium-Catalyzed MCRs -- 3.7 Conclusions -- References -- Chapter 4 Multicomponent Reactions with Organoboron Compounds -- 4.1 Introduction -- 4.2 Catalytic MCRs with Organoboron Compounds -- 4.2.1 Cobalt-Catalyzed MCRs Containing Organoboron Compounds -- 4.2.2 Palladium-Catalyzed MCRs Containing Organoboron Compounds -- 4.3 Multicomponent Assembly of Organoboron Compounds: Efficient Approach to Supramolecular Chemistry -- 4.4 Multicomponent Petasis-Borono-Mannich Reaction -- 4.4.1 Organocatalytic Enantioselective Petasis-Type Reaction -- 4.4.2 Metal-Catalyzed Four-Component PBM Reaction -- 4.4.3 Synthetic Applications of PBM -- 4.5 Allenylborates in MCRs -- 4.6 Multicomponent Hetero-Diels-Alder/Allylboration -- 4.6.1 Chiral Catalyzed One-Pot [4+2] Cycloaddition/Allylboration -- 4.6.2 Polymer-Supported MCRs -- 4.7 Palladium-Catalyzed Asymmetric Allene Diboration/α-Aminoallylation -- 4.8 Synthetic Applications of Boron-Based MCRs -- 4.9 Conclusion -- References -- Chapter 5 Carbene-Promoted Multicomponent Reactions -- 5.1 Introduction -- 5.2 MCRs Involving Carbenes as Key Components -- 5.2.1 MCRs of Dimethoxycarbenes -- 5.2.2 MCRs of NHCs -- 5.2.3 FCCs as Reagents: Approach to Highly Substituted Carbo- and Heterocycles -- 5.3 MCRs Involving Carbenes as Catalysts -- 5.3.1 NHCs as Organocatalysts in MCRs -- 5.3.2 Metal-Catalyzed Mcrs Involving Nhcs as Ligands -- 5.4 Synthetic Utility -- 5.4.1 Carbenes as Components.
5.4.2 NHCs as Catalysts/Ligand -- 5.5 Conclusion -- References -- Chapter 6 Multicomponent Reactions in the Synthesis of Target Molecules -- 6.1 Introduction -- 6.2 MCRs in Drug Discovery and for the Synthesis of Biologically Important Molecules -- 6.3 Synthesis of Natural Products in an Efficient Manner -- 6.4 Heterocycles as Key Substrates in MCRs -- 6.4.1 Synthesis of Indoles -- 6.4.2 Synthesis of Fused Polyheterocycles -- 6.4.3 Synthesis of Spiro-Type Polyheterocyclic Compounds -- 6.4.4 Synthesis of DHPMs and Thiazines -- 6.4.5 Synthesis of Pyrroles -- 6.5 Amino Acid Derivatives by MCRs -- 6.6 Industrial Applications -- 6.7 Conclusion -- References -- Chapter 7 Recent Advances in the Ugi Multicomponent Reactions -- 7.1 Introduction -- 7.2 Ugi Three-Component Reactions -- 7.3 Ugi Four-Component Reactions -- 7.4 Five-, Six-, Seven-, and Eight-Component Reactions Based on the Ugi Reaction -- 7.5 Ugi Postmodification Processes -- 7.6 Ugi-Smiles Approach -- 7.7 Ugi-Smiles Postmodification Processes -- 7.8 Conclusion -- References -- Chapter 8 Passerini Multicomponent Reactions -- 8.1 Introduction -- 8.2 O-Alkylative and Silylative Passerini Three-Component Reactions -- 8.2.1 O-Arylative Passerini Three-Component Reactions -- 8.2.2 Metal-Catalyzed O-Alkylative Passerini Three-Component Reactions -- 8.2.3 O-Silylative Passerini Three-Component Reactions -- 8.3 Passerini 3CR Under Oxidative Conditions -- 8.3.1 Metal-Catalyzed Oxidation Passerini 3CR -- 8.4 Synthesis of Macrocycles by a Passerini Reaction -- 8.5 Enantioselective Metal-Catalyzed Passerini Reaction -- 8.6 Synthesis of Pharmacologically Important Peptidomimetics -- 8.7 Multicomponent Passerini Approach to Important Targets -- 8.8 α-Hydroxycarboxamide, an Important Intermediate for Chemical Synthesis -- 8.9 Passerini 3CR under Eco-Friendly Reaction Conditions -- 8.9.1 Aqueous Media.
8.9.2 Ionic Liquids and PEG -- 8.9.3 Solvent-Free Conditions -- 8.9.4 MW-Assisted Passerini Reaction -- 8.10 Conclusions -- References -- Chapter 9 Biginelli Multicomponent Reactions -- 9.1 Introduction -- 9.2 Mechanism -- 9.3 Chiral Lewis- and Brønsted Acid-Catalyzed Biginelli Reactions -- 9.4 Brønsted Base-Catalyzed One-Pot Three-Component Biginelli-Type Reactions -- 9.5 Organocatalytic Enantioselective Biginelli Reactions -- 9.5.1 Chiral Brønsted Acid-Organocatalyzed Biginelli Reactions -- 9.5.2 Aminocatalyzed Biginelli Reactions -- 9.6 Variations of the Traditional Biginelli Condensation -- 9.7 Heterocycles beyond the DHPMs -- 9.8 Important Targets -- 9.9 Conclusion -- References -- Chapter 10 Bucherer-Bergs And Strecker Multicomponent Reactions -- 10.1 Bucherer-Bergs Reaction -- 10.1.1 Introduction -- 10.1.2 Comparative Stereochemical Course -- 10.1.3 Synthesis of Five-Membered Heterocycles -- 10.1.4 Metal-Catalyzed Synthesis of Hydantoin Derivatives -- 10.1.5 Modified Bucherer-Bergs Reaction -- 10.1.6 Synthesis of α-Amino Acids via Hydantoin Intermediate -- 10.1.7 Synthesis of Diaminodicarboxylic Acids -- 10.2 MC Strecker Reaction -- 10.2.1 Introduction -- 10.2.2 MC Strecker Reaction Using Aldehyde -- 10.2.3 Strecker-Type Reaction Using Ketones -- 10.2.4 Catalyst-Free Strecker Reactions in Water -- 10.2.5 Catalyst-Free Strecker Reactions under Solvent-Free Conditions -- 10.2.6 Metal-Catalyzed Strecker-Type Reaction -- 10.2.7 Organocatalytic MC Strecker Reaction -- 10.2.8 Efficient Heterogeneous Catalysis for the Synthesis of α-Aminonitriles -- 10.2.9 Synthetic Utility -- 10.3 Conclusions -- References -- Chapter 11 Unusual Approach for Multicomponent Reactions -- 11.1 Zeolite-Catalyzed MCRs -- 11.1.1 Heterogeneous Hybrid Catalyst -- 11.2 MW-Assisted Three-Component Reactions -- 11.2.1 Synthesis of Natural Products.
11.3 Ionic Liquid-Promoted MCRs -- 11.4 MCRs under Solvent-Free Conditions -- 11.5 MCRs in Aqueous Media -- 11.6 High-Pressure Promoted MCRs -- 11.7 Three-Component Reactions Using Supported Reagents -- 11.8 Conclusion -- References -- Chapter 12 Essential Multicomponent Reactions I -- 12.1 Radziszewski Reactions (Imidazole Synthesis) -- 12.1.1 Introduction -- 12.1.2 Modified Radziszewski Reactions: Efficient Tool for the Synthesis of Substituted Imidazoles -- 12.2 Sakurai MCRs -- 12.2.1 Introduction -- 12.2.2 Synthesis of Homoallylic Ethers -- 12.2.3 Synthesis of Homoallylic Amines: Aza-Sakurai -- 12.3 Gewald MCRs -- 12.3.1 Introduction -- 12.3.2 Easy Protocol for Synthesizing 2-Aminothiophene Derivatives -- 12.4 Kabachnik-Fields Reactions -- 12.4.1 Introduction -- 12.4.2 Straightforward Synthesis of α-Amino Phosphonates -- 12.5 Conclusion -- References -- Chapter 13 Essential Multicomponent Reactions II -- 13.1 Knoevenagel Reactions in Multicomponent Syntheses -- 13.1.1 Introduction -- 13.1.2 Domino Knoevenagel/Hetero-Diels-Alder Reaction and Pyran Syntheses -- 13.1.3 Useful Syntheses of Heterocycles: 1,4-Dihydropyridine and Diazine Syntheses -- 13.1.4 Useful Syntheses of Heterocycles: Various Heterocyclic Scaffolds -- 13.1.5 Other Knoevenagel Combinations -- 13.2 Yonemitsu-Type Trimolecular Condensations -- 13.2.1 Introduction and Mechanistic Aspects -- 13.2.2 Applications of the Original Yonemitsu Trimolecular Condensation -- 13.2.3 Yonemitsu-Type Reactions and Tetramolecular Condensations -- 13.3 MCRs Involving Meldrum's Acid -- 13.3.1 Introduction -- 13.3.2 Applications and DOS -- 13.3.3 Meldrum's Acid as Synthetic Equivalent -- 13.3.4 Meldrum's Acid as Malonic Acid Equivalent -- 13.4 Povarov MCRs -- 13.4.1 Introduction -- 13.4.2 Mechanistic Aspects -- 13.4.3 Efficient Synthesis of 1,2,3,4-Tetrahydroquinolines.
13.4.4 Efficient Synthesis of Quinolines.
Summary: Addressing a dynamic aspect of organic chemistry, this book describes synthetic strategies and applications for multicomponent reactions - including key routes for synthesizing complex molecules.     Illustrates the crucial role and the important utility of multicomponent reactions (MCRs) to organic syntheses     Compiles novel and efficient synthetic multicomponent procedures to give readers a complete picture of this class of organic reactions     Helps readers to design efficient and practical transformations using multicomponent reaction strategies     Describes reaction background, applications to synthesize complex molecules and drugs, and reaction mechanisms.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan Available EBKAF-N0001519
Ebrary Ebrary Algeria Available
Ebrary Ebrary Cyprus Available
Ebrary Ebrary Egypt Available
Ebrary Ebrary Libya Available
Ebrary Ebrary Morocco Available
Ebrary Ebrary Nepal Available EBKNP-N0001519
Ebrary Ebrary Sudan Available
Ebrary Ebrary Tunisia Available
Total holds: 0

Intro -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- List of Abbrevations -- Chapter 1 Introduction: Multicomponent Strategies -- General Introduction -- 1.1 Basic Concepts -- 1.1.1 Clarifying Terminology: One-Pot, Domino/Cascade, Tandem, and MCRs -- 1.1.2 Using Rational Design to Discover New MCRs -- 1.1.3 Discovering New MCRs with Automated Combinatorial Reaction Finding -- 1.1.4 Computational and Analytical Tools to Study MCRs -- 1.1.5 Diversity-Oriented Synthesis and Biology-Oriented Synthesis -- 1.1.6 Optimization of MCRs -- 1.2 Catalysis in MCRs and Various Synthetic Approaches -- 1.2.1 Organocatalysis in MCRs -- 1.2.2 Organometallic Catalysis in MCRs -- 1.2.3 Biocatalysis in MCRs -- 1.2.4 Combining Different Types of Catalysis -- 1.2.5 Other Methods -- 1.3 Green Chemistry -- 1.3.1 Atom Economy -- 1.3.2 Using Green Solvents -- 1.3.3 Solventless MCRs -- 1.3.4 Heterogeneous Catalysis in MCRs -- 1.4 Importance and Evolution -- References -- Chapter 2 Organocatalytic Asymmetric Multicomponent Reactions -- 2.1 Introduction -- 2.2 Three-Component Mannich Reaction -- 2.3 Cycloaddition Reaction -- 2.4 Organocatalytic Multicomponent Domino Asymmetric Reactions -- 2.4.1 Michael-Type Multicomponent Process: Cyclic Carbon Frameworks -- 2.4.2 Miscellaneous Domino Reactions -- 2.5 Development of Drug Intermediates -- 2.6 Miscellaneous Reaction -- 2.7 Conclusions -- References -- Chapter 3 Metal-Catalyzed Multicomponent Reactions -- 3.1 Introduction -- 3.2 Palladium-Catalyzed MCRs -- 3.2.1 Palladium-Catalyzed Carbonylation Reactions -- 3.2.2 Palladium-Catalyzed MCRs Involving Isocyanides -- 3.2.3 Carbopalladation of Unsaturated C─C π-Components -- 3.2.4 Amines as Building Blocks -- 3.3 Nickel-Catalyzed MCRs -- 3.3.1 Nickel-Catalyzed Cross-Trimerization of Alkynes -- 3.3.2 Nickel-Catalyzed π-Systems Couplings.

3.3.3 Ni-Catalyzed Reductive Conjugate Addition -- 3.4 Group 11 Metal-Catalyzed MCRs -- 3.4.1 Copper-Catalyzed Azide-Alkyne Cycloaddition -- 3.4.2 A3-Coupling -- 3.4.3 Miscellaneous -- 3.5 Rhodium-Catalyzed MCRs -- 3.5.1 Rhodium-Catalyzed Mcrs via Onium Ylide Intermediates -- 3.5.2 Rhodium-Catalyzed Three-Component Cross-Addition Reactions -- 3.6 Group 8 Metal-Catalyzed MCRs -- 3.6.1 Iron-Catalyzed MCRs -- 3.6.2 Ruthenium-Catalyzed MCRs -- 3.7 Conclusions -- References -- Chapter 4 Multicomponent Reactions with Organoboron Compounds -- 4.1 Introduction -- 4.2 Catalytic MCRs with Organoboron Compounds -- 4.2.1 Cobalt-Catalyzed MCRs Containing Organoboron Compounds -- 4.2.2 Palladium-Catalyzed MCRs Containing Organoboron Compounds -- 4.3 Multicomponent Assembly of Organoboron Compounds: Efficient Approach to Supramolecular Chemistry -- 4.4 Multicomponent Petasis-Borono-Mannich Reaction -- 4.4.1 Organocatalytic Enantioselective Petasis-Type Reaction -- 4.4.2 Metal-Catalyzed Four-Component PBM Reaction -- 4.4.3 Synthetic Applications of PBM -- 4.5 Allenylborates in MCRs -- 4.6 Multicomponent Hetero-Diels-Alder/Allylboration -- 4.6.1 Chiral Catalyzed One-Pot [4+2] Cycloaddition/Allylboration -- 4.6.2 Polymer-Supported MCRs -- 4.7 Palladium-Catalyzed Asymmetric Allene Diboration/α-Aminoallylation -- 4.8 Synthetic Applications of Boron-Based MCRs -- 4.9 Conclusion -- References -- Chapter 5 Carbene-Promoted Multicomponent Reactions -- 5.1 Introduction -- 5.2 MCRs Involving Carbenes as Key Components -- 5.2.1 MCRs of Dimethoxycarbenes -- 5.2.2 MCRs of NHCs -- 5.2.3 FCCs as Reagents: Approach to Highly Substituted Carbo- and Heterocycles -- 5.3 MCRs Involving Carbenes as Catalysts -- 5.3.1 NHCs as Organocatalysts in MCRs -- 5.3.2 Metal-Catalyzed Mcrs Involving Nhcs as Ligands -- 5.4 Synthetic Utility -- 5.4.1 Carbenes as Components.

5.4.2 NHCs as Catalysts/Ligand -- 5.5 Conclusion -- References -- Chapter 6 Multicomponent Reactions in the Synthesis of Target Molecules -- 6.1 Introduction -- 6.2 MCRs in Drug Discovery and for the Synthesis of Biologically Important Molecules -- 6.3 Synthesis of Natural Products in an Efficient Manner -- 6.4 Heterocycles as Key Substrates in MCRs -- 6.4.1 Synthesis of Indoles -- 6.4.2 Synthesis of Fused Polyheterocycles -- 6.4.3 Synthesis of Spiro-Type Polyheterocyclic Compounds -- 6.4.4 Synthesis of DHPMs and Thiazines -- 6.4.5 Synthesis of Pyrroles -- 6.5 Amino Acid Derivatives by MCRs -- 6.6 Industrial Applications -- 6.7 Conclusion -- References -- Chapter 7 Recent Advances in the Ugi Multicomponent Reactions -- 7.1 Introduction -- 7.2 Ugi Three-Component Reactions -- 7.3 Ugi Four-Component Reactions -- 7.4 Five-, Six-, Seven-, and Eight-Component Reactions Based on the Ugi Reaction -- 7.5 Ugi Postmodification Processes -- 7.6 Ugi-Smiles Approach -- 7.7 Ugi-Smiles Postmodification Processes -- 7.8 Conclusion -- References -- Chapter 8 Passerini Multicomponent Reactions -- 8.1 Introduction -- 8.2 O-Alkylative and Silylative Passerini Three-Component Reactions -- 8.2.1 O-Arylative Passerini Three-Component Reactions -- 8.2.2 Metal-Catalyzed O-Alkylative Passerini Three-Component Reactions -- 8.2.3 O-Silylative Passerini Three-Component Reactions -- 8.3 Passerini 3CR Under Oxidative Conditions -- 8.3.1 Metal-Catalyzed Oxidation Passerini 3CR -- 8.4 Synthesis of Macrocycles by a Passerini Reaction -- 8.5 Enantioselective Metal-Catalyzed Passerini Reaction -- 8.6 Synthesis of Pharmacologically Important Peptidomimetics -- 8.7 Multicomponent Passerini Approach to Important Targets -- 8.8 α-Hydroxycarboxamide, an Important Intermediate for Chemical Synthesis -- 8.9 Passerini 3CR under Eco-Friendly Reaction Conditions -- 8.9.1 Aqueous Media.

8.9.2 Ionic Liquids and PEG -- 8.9.3 Solvent-Free Conditions -- 8.9.4 MW-Assisted Passerini Reaction -- 8.10 Conclusions -- References -- Chapter 9 Biginelli Multicomponent Reactions -- 9.1 Introduction -- 9.2 Mechanism -- 9.3 Chiral Lewis- and Brønsted Acid-Catalyzed Biginelli Reactions -- 9.4 Brønsted Base-Catalyzed One-Pot Three-Component Biginelli-Type Reactions -- 9.5 Organocatalytic Enantioselective Biginelli Reactions -- 9.5.1 Chiral Brønsted Acid-Organocatalyzed Biginelli Reactions -- 9.5.2 Aminocatalyzed Biginelli Reactions -- 9.6 Variations of the Traditional Biginelli Condensation -- 9.7 Heterocycles beyond the DHPMs -- 9.8 Important Targets -- 9.9 Conclusion -- References -- Chapter 10 Bucherer-Bergs And Strecker Multicomponent Reactions -- 10.1 Bucherer-Bergs Reaction -- 10.1.1 Introduction -- 10.1.2 Comparative Stereochemical Course -- 10.1.3 Synthesis of Five-Membered Heterocycles -- 10.1.4 Metal-Catalyzed Synthesis of Hydantoin Derivatives -- 10.1.5 Modified Bucherer-Bergs Reaction -- 10.1.6 Synthesis of α-Amino Acids via Hydantoin Intermediate -- 10.1.7 Synthesis of Diaminodicarboxylic Acids -- 10.2 MC Strecker Reaction -- 10.2.1 Introduction -- 10.2.2 MC Strecker Reaction Using Aldehyde -- 10.2.3 Strecker-Type Reaction Using Ketones -- 10.2.4 Catalyst-Free Strecker Reactions in Water -- 10.2.5 Catalyst-Free Strecker Reactions under Solvent-Free Conditions -- 10.2.6 Metal-Catalyzed Strecker-Type Reaction -- 10.2.7 Organocatalytic MC Strecker Reaction -- 10.2.8 Efficient Heterogeneous Catalysis for the Synthesis of α-Aminonitriles -- 10.2.9 Synthetic Utility -- 10.3 Conclusions -- References -- Chapter 11 Unusual Approach for Multicomponent Reactions -- 11.1 Zeolite-Catalyzed MCRs -- 11.1.1 Heterogeneous Hybrid Catalyst -- 11.2 MW-Assisted Three-Component Reactions -- 11.2.1 Synthesis of Natural Products.

11.3 Ionic Liquid-Promoted MCRs -- 11.4 MCRs under Solvent-Free Conditions -- 11.5 MCRs in Aqueous Media -- 11.6 High-Pressure Promoted MCRs -- 11.7 Three-Component Reactions Using Supported Reagents -- 11.8 Conclusion -- References -- Chapter 12 Essential Multicomponent Reactions I -- 12.1 Radziszewski Reactions (Imidazole Synthesis) -- 12.1.1 Introduction -- 12.1.2 Modified Radziszewski Reactions: Efficient Tool for the Synthesis of Substituted Imidazoles -- 12.2 Sakurai MCRs -- 12.2.1 Introduction -- 12.2.2 Synthesis of Homoallylic Ethers -- 12.2.3 Synthesis of Homoallylic Amines: Aza-Sakurai -- 12.3 Gewald MCRs -- 12.3.1 Introduction -- 12.3.2 Easy Protocol for Synthesizing 2-Aminothiophene Derivatives -- 12.4 Kabachnik-Fields Reactions -- 12.4.1 Introduction -- 12.4.2 Straightforward Synthesis of α-Amino Phosphonates -- 12.5 Conclusion -- References -- Chapter 13 Essential Multicomponent Reactions II -- 13.1 Knoevenagel Reactions in Multicomponent Syntheses -- 13.1.1 Introduction -- 13.1.2 Domino Knoevenagel/Hetero-Diels-Alder Reaction and Pyran Syntheses -- 13.1.3 Useful Syntheses of Heterocycles: 1,4-Dihydropyridine and Diazine Syntheses -- 13.1.4 Useful Syntheses of Heterocycles: Various Heterocyclic Scaffolds -- 13.1.5 Other Knoevenagel Combinations -- 13.2 Yonemitsu-Type Trimolecular Condensations -- 13.2.1 Introduction and Mechanistic Aspects -- 13.2.2 Applications of the Original Yonemitsu Trimolecular Condensation -- 13.2.3 Yonemitsu-Type Reactions and Tetramolecular Condensations -- 13.3 MCRs Involving Meldrum's Acid -- 13.3.1 Introduction -- 13.3.2 Applications and DOS -- 13.3.3 Meldrum's Acid as Synthetic Equivalent -- 13.3.4 Meldrum's Acid as Malonic Acid Equivalent -- 13.4 Povarov MCRs -- 13.4.1 Introduction -- 13.4.2 Mechanistic Aspects -- 13.4.3 Efficient Synthesis of 1,2,3,4-Tetrahydroquinolines.

13.4.4 Efficient Synthesis of Quinolines.

Addressing a dynamic aspect of organic chemistry, this book describes synthetic strategies and applications for multicomponent reactions - including key routes for synthesizing complex molecules.     Illustrates the crucial role and the important utility of multicomponent reactions (MCRs) to organic syntheses     Compiles novel and efficient synthetic multicomponent procedures to give readers a complete picture of this class of organic reactions     Helps readers to design efficient and practical transformations using multicomponent reaction strategies     Describes reaction background, applications to synthesize complex molecules and drugs, and reaction mechanisms.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.