Amazon cover image
Image from Amazon.com

Particle Adhesion and Removal.

By: Contributor(s): Series: Adhesion and Adhesives: Fundamental and Applied Aspects SerPublisher: Somerset : John Wiley & Sons, Incorporated, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (573 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118831557
Subject(s): Genre/Form: Additional physical formats: Print version:: Particle Adhesion and RemovalDDC classification:
  • 530.4/17
LOC classification:
  • QC176.8.A35 -- .P36 2015eb
Online resources:
Contents:
Front Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: Particle Adhesion: Fundamentals -- 1 Fundamental Forces in Particle Adhesion -- 1.1 Introduction -- 1.2 Various Forces in Particle Adhesion -- 1.2.1 Capillary Forces -- 1.2.2 van der Waals Forces -- 1.2.3 Electrostatic Forces -- 1.3 Summary -- References -- 2 Mechanics of Particle Adhesion and Removal -- 2.1 Introduction -- 2.2 Models -- 2.2.1 Particle Adhesion and Detachment Models -- 2.2.2 Rough Particles Adhesion -- 2.2.3 Charge Distribution -- 2.2.4 Electrostatic Forces -- 2.2.5 Capillary Force -- 2.2.6 Hydrodynamic Forces and Torque -- 2.2.7 Particle Detachment Models -- 2.3 Simulations Results -- 2.4 Summary and Conclusions -- Acknowledgements -- References -- 3 Microscopic Particle Contact Adhesion Models and Macroscopic Behavior of Surface Modified Particles -- 3.1 Introduction -- 3.2 Constitutive Contact Models -- 3.2.1 Elastic Contact Deformation -- 3.2.2 Elastic-plastic Contact Deformation -- 3.2.3 Plastic Contact Deformation -- 3.2.4 Unloading -- 3.3 Macroscopic Powder Behavior - Continuum Mechanics Approach -- 3.4 Surface Modification to Alter the Adhesion Properties -- 3.4.1 Surface Free Energy: Dispersion and Polar Components -- 3.4.2 Glass Surface Cleaning Prior to Silanization -- 3.4.3 Silanization -- 3.5 Experimental Measurements of the Adhesion Forces -- 3.5.1 Single Particle Adhesion Measurements -- 3.5.2 Shear Testing - Macromechanical Approach -- 3.6 Summary and Conclusions -- Acknowledgements -- List of Symbols -- References -- 4 Characterization of Single Particle Adhesion: A Review of Recent Progress -- 4.1 Introduction -- 4.2 Background -- 4.2.1 Adhesion Models -- 4.2.2 Measurement Methods -- 4.2.3 Non-contact Adhesion Characterization of Single Particles -- 4.2.4 Particle Adhesion to Nano-film Coated Surfaces.
4.2.5 Non-contact Particle Manipulation -- 4.2.6 Molecular-scale Characterization Challenges in Biological Adhesion -- 4.3 Recent Developments -- 4.3.1 Nonlinear Dynamics in Adhesion Characterization of Micro-Particles -- 4.3.2 Adhesion Characterization of Monolayer Graphene by Vibrational Spectroscopy -- 4.3.3 Controllable Rolling Motion of Micro-Spherical Particles in SAW Fields -- 4.4 Conclusions and Remarks -- Acknowledgments -- List of Symbols -- References -- Part 2: Particle Removal Techniques -- 5 High Intensity Ultrasonic Cleaning for Particle Removal -- 5.1 Introduction -- 5.2 Ultrasound and Ultrasonics -- 5.2.1 Ultrasound Waves -- 5.2.2 Factors Hindering the Transmission of Ultrasound Waves -- 5.2.3 Principal Mechanism of High Power Ultrasound -- 5.3 Cavitation Phenomenon -- 5.3.1 Cavitations and Micro-streaming -- 5.3.2 Frequency and Cavitation Abundance -- 5.3.3 Types of Cavitations -- 5.4 Generation of Ultrasound - Transducers -- 5.4.1 Gas-driven Transducers -- 5.4.2 Liquid-driven Transducers -- 5.4.3 Electromechanical Transducers -- 5.4.4 Transducer Assembly -- 5.4.5 Ultrasonic Immersible Transducers -- 5.5 Ultrasonic Generators -- 5.5.1 Power Requirements -- 5.5.2 Multi-Frequency Ultrasonic Systems -- 5.6 Principles of Ultrasonic Cleaning for Particle Removal -- 5.6.1 Cleaning Process Parameters -- 5.7 Determination of Residual Particles on Surfaces -- 5.8 Ultrasonic Aqueous Cleaning Equipment and Process -- 5.9 Precision Cleaning -- 5.10 Contaminants -- 5.11 Ultrasonic Cavitation Forces and Surface Cleaning -- 5.11.1 Requirements to Produce Cavitations -- 5.12 Cleaning Chemistry -- 5.12.1 Selection of Ultrasonic Cleaning Chemicals -- 5.12.2 Maximizing the Overall Cleaning Effect -- 5.13 Mechanism of Cleaning -- 5.13.1 Particle Removal -- 5.13.2 Particle Removal Mechanism -- 5.13.3 Prevention of Particle Re-deposition.
5.13.4 Cleaning Chemistry and Particle Removal -- 5.14 Cavitation Erosion -- 5.15 Summary -- References -- 6 Megasonic Cleaning for Particle Removal -- 6.1 Introduction -- 6.1.1 Wafer Cleaning -- 6.2 Principles of Megasonic Cleaning -- 6.2.1 Acoustic Streaming -- 6.2.2 Acoustic Cavitation -- 6.3 Particle Removal Mechanisms During Megasonic Cleaning -- 6.4 Types of Megasonic Systems -- 6.5 Particle Removal and Feature Damage in Megasonic Cleaning -- 6.6 Summary -- References -- 7 High Speed Air Jet Removal of Particles from Solid Surfaces -- 7.1 Introduction -- 7.2 Fundamental Characteristics of the Air Jet -- 7.3 Fundamentals of Air Jet Particle Removal -- 7.3.1 Definition of Parameters and Removal Efficiency -- 7.3.2 Effect of Pressure Drop ΔPn and Distance d on Removal Efficiency η [22] -- 7.3.3 Effect of Impinging Angle θ [21, 23] -- 7.3.4 Effect of Scan Speed of Air Jet -- 7.3.5 Other Parameters Affecting the Removal Efficiency -- 7.4 New Methods Using Air Jet -- 7.4.1 Pulsed-jet Method -- 7.4.2 Vibrating Air Jet Method -- 7.5 Summary and Prospect -- List of Symbols -- References -- 8 Droplet Spray Technique for Particle Removal -- 8.1 Introduction -- 8.2 Droplet Impact Phenomena -- 8.2.1 Impact on Solid Surface -- 8.2.2 Crown Formation -- 8.2.3 Impact on Liquid Film -- 8.3 Cleaning Process Window -- 8.3.1 Theoretical Studies -- 8.3.2 Experimental Studies -- 8.4 Droplet Spray Technique for Semiconductor Wafer Cleaning -- 8.4.1 Initial Studies -- 8.4.2 Droplet Distribution Optimization -- 8.4.3 Advanced Spray -- 8.5 Summary -- References -- 9 Laser-Induced High-Pressure Micro-Spray Process for Nanoscale Particle Removal -- 9.1 Introduction -- 9.1.1 Nanoscale Contamination Control -- 9.1.2 Review of Physical Cleaning Methods -- 9.2 Concept of Droplet Opto-Hydrodynamic Cleaning (DOC) -- 9.3 Micro-Spray Generation by LIB.
9.4 Mechanisms of Particle Removal by Laser-Induced Spray Jet -- 9.5 Generation of Micro-Spray Jet -- 9.5.1 Experimental Setup -- 9.5.2 Hydrodynamic Phenomena -- 9.6 Nanoscale Particle Removal -- 9.6.1 Experimental Setup -- 9.6.2 Optimization of Micro-Spray Jet -- 9.6.3 Effect of Process Parameters -- 9.6.4 Sub-100 nm Particle Cleaning -- 9.7 Summary -- References -- 10 Wiper-Based Cleaning of Particles from Surfaces -- 10.1 Introduction -- 10.1.1 Why Wipe? -- 10.1.2 Particle Cleanliness -- 10.2 Basic Mechanism of Wiping for Cleaning of Particles and Other Contaminants -- 10.2.1 Why Wiping Works -- 10.2.2 Wiping Mechanisms for Particle Removal -- 10.2.3 Contamination Types -- 10.3 Various Types of Wipers -- 10.3.1 Fabric Construction -- 10.3.2 Edge Type -- 10.3.3 Selecting a Cleanroom Wiper -- 10.4 Proper Ways to Carry Out Wiping or How to Use Wipers Properly -- 10.4.1 The Purpose of Wiping -- 10.4.2 Wiping Methods -- 10.4.3 Introductory Training Example for Wiper-Based Particle Cleaning -- 10.5 Characterization of Wipers -- 10.5.1 Methods to Assess Wiper Particle and Fiber Contamination Levels -- 10.6 Results Obtained Using Wiping -- 10.6.1 Test Method -- 10.6.2 Experimental Setup -- 10.6.3 Data Collection -- 10.6.4 Results -- 10.6.5 Comments -- 10.7 Future Directions -- 10.7.1 Nanotechnology -- 10.7.2 Microfiber Technology -- 10.8 Summary -- References -- 11 Application of Strippable Coatings for Removal of Particulate Contaminants -- 11.1 Introduction -- 11.2 Coating Description -- 11.2.1 Coating Properties -- 11.3 Types of Strippable Coatings -- 11.3.1 Solvent-Based Coatings -- 11.3.2 Water-Based Coatings -- 11.3.3 Coatings for Removal of Radioactive Contamination -- 11.3.4 Hazardous Materials Cleaning -- 11.3.5 UV Curable Coatings -- 11.4 Issues with Strippable Coatings -- 11.5 Precision Cleaning Applications -- 11.5.1 Optical Surfaces.
11.5.2 Other Applications -- 11.5.3 Non-Optical Cleaning Applications -- 11.6 Summary -- Disclaimer -- References -- 12 Cryoaerosol Cleaning of Particles from Surfaces -- 12.1 Introduction -- 12.2 History of Cryoaerosol Cleaning -- 12.3 Thermodynamics of Cryoaerosol Processes -- 12.3.1 Thermodynamics of CO2 Aerosol Process -- 12.3.2 Thermodynamics of Ar/N2 Cryogenic Aerosol System -- 12.4 Cleaning Mechanism -- 12.5 Factors Affecting Cleaning Performance -- 12.5.1 Moisture Control -- 12.5.2 Control of Electrostatic Charging -- 12.5.3 Airflow Management -- 12.5.4 Aerosol Particle Size Control -- 12.5.5 Gas Purity -- 12.6 Results Obtained by Cryoaerosol Cleaning -- 12.7 Summary and Prospects -- References -- 13 Supercritical Carbon Dioxide Cleaning: Relevance to Particle Removal -- 13.1 Introduction -- 13.2 Surface Cleanliness Levels -- 13.3 Dense Phase Fluids -- 13.3.1 Supercritical Carbon Dioxide -- 13.4 Principles of Supercritical CO2 Cleaning -- 13.4.1 Cleaning Systems -- 13.4.2 Costs -- 13.5 Advantages and Disadvantages of Supercritical CO2 Cleaning -- 13.5.1 Advantages -- 13.5.2 Disadvantages -- 13.6 Applications -- 13.6.1 Cleaning Spacecraft Components and Planetary Protection -- 13.6.2 Cleaning of Printing Rollers -- 13.6.3 Carbon Nanotubes -- 13.6.4 Soil Cleaning with Ionic Liquids and SCCO2 -- 13.6.5 Conservation of Historical Art Objects and Structures -- 13.6.6 Sterilization -- 13.6.7 Monitoring of SCCO2 Precision Cleaning Processes with the Quartz Crystal Microbalance -- 13.7 Summary and Conclusions -- Acknowledgement -- Disclaimer -- References -- 14 The Use of Surfactants to Enhance Particle Removal from Surfaces -- 14.1 Introduction -- 14.2 Solid-Solid Interactions -- 14.3 Introduction to Surfactants -- 14.4 Surfactant Adsorption at Solid Surfaces -- 14.5 Surfactants and Particulate Removal -- 14.6 Prospects -- 14.7 Summary.
Acknowledgements.
Summary: The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal. 2. Mechanisms of particle adhesion and removal. 3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions. 4. Mechanics of adhesion of micro- and  nanoscale particles. 5. Various factors affecting particle adhesion to a variety of substrates. 6. Surface modification techniques to modulate particle adhesion. 7. Various cleaning methods (both wet & dry) for particle removal. 8. Relevance of particle adhesion in a host of technologies ranging from simple to ultra-sophisticated.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Ebrary Ebrary Afghanistan Available EBKAF-N0001494
Ebrary Ebrary Algeria Available
Ebrary Ebrary Cyprus Available
Ebrary Ebrary Egypt Available
Ebrary Ebrary Libya Available
Ebrary Ebrary Morocco Available
Ebrary Ebrary Nepal Available EBKNP-N0001494
Ebrary Ebrary Sudan Available
Ebrary Ebrary Tunisia Available
Total holds: 0

Front Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: Particle Adhesion: Fundamentals -- 1 Fundamental Forces in Particle Adhesion -- 1.1 Introduction -- 1.2 Various Forces in Particle Adhesion -- 1.2.1 Capillary Forces -- 1.2.2 van der Waals Forces -- 1.2.3 Electrostatic Forces -- 1.3 Summary -- References -- 2 Mechanics of Particle Adhesion and Removal -- 2.1 Introduction -- 2.2 Models -- 2.2.1 Particle Adhesion and Detachment Models -- 2.2.2 Rough Particles Adhesion -- 2.2.3 Charge Distribution -- 2.2.4 Electrostatic Forces -- 2.2.5 Capillary Force -- 2.2.6 Hydrodynamic Forces and Torque -- 2.2.7 Particle Detachment Models -- 2.3 Simulations Results -- 2.4 Summary and Conclusions -- Acknowledgements -- References -- 3 Microscopic Particle Contact Adhesion Models and Macroscopic Behavior of Surface Modified Particles -- 3.1 Introduction -- 3.2 Constitutive Contact Models -- 3.2.1 Elastic Contact Deformation -- 3.2.2 Elastic-plastic Contact Deformation -- 3.2.3 Plastic Contact Deformation -- 3.2.4 Unloading -- 3.3 Macroscopic Powder Behavior - Continuum Mechanics Approach -- 3.4 Surface Modification to Alter the Adhesion Properties -- 3.4.1 Surface Free Energy: Dispersion and Polar Components -- 3.4.2 Glass Surface Cleaning Prior to Silanization -- 3.4.3 Silanization -- 3.5 Experimental Measurements of the Adhesion Forces -- 3.5.1 Single Particle Adhesion Measurements -- 3.5.2 Shear Testing - Macromechanical Approach -- 3.6 Summary and Conclusions -- Acknowledgements -- List of Symbols -- References -- 4 Characterization of Single Particle Adhesion: A Review of Recent Progress -- 4.1 Introduction -- 4.2 Background -- 4.2.1 Adhesion Models -- 4.2.2 Measurement Methods -- 4.2.3 Non-contact Adhesion Characterization of Single Particles -- 4.2.4 Particle Adhesion to Nano-film Coated Surfaces.

4.2.5 Non-contact Particle Manipulation -- 4.2.6 Molecular-scale Characterization Challenges in Biological Adhesion -- 4.3 Recent Developments -- 4.3.1 Nonlinear Dynamics in Adhesion Characterization of Micro-Particles -- 4.3.2 Adhesion Characterization of Monolayer Graphene by Vibrational Spectroscopy -- 4.3.3 Controllable Rolling Motion of Micro-Spherical Particles in SAW Fields -- 4.4 Conclusions and Remarks -- Acknowledgments -- List of Symbols -- References -- Part 2: Particle Removal Techniques -- 5 High Intensity Ultrasonic Cleaning for Particle Removal -- 5.1 Introduction -- 5.2 Ultrasound and Ultrasonics -- 5.2.1 Ultrasound Waves -- 5.2.2 Factors Hindering the Transmission of Ultrasound Waves -- 5.2.3 Principal Mechanism of High Power Ultrasound -- 5.3 Cavitation Phenomenon -- 5.3.1 Cavitations and Micro-streaming -- 5.3.2 Frequency and Cavitation Abundance -- 5.3.3 Types of Cavitations -- 5.4 Generation of Ultrasound - Transducers -- 5.4.1 Gas-driven Transducers -- 5.4.2 Liquid-driven Transducers -- 5.4.3 Electromechanical Transducers -- 5.4.4 Transducer Assembly -- 5.4.5 Ultrasonic Immersible Transducers -- 5.5 Ultrasonic Generators -- 5.5.1 Power Requirements -- 5.5.2 Multi-Frequency Ultrasonic Systems -- 5.6 Principles of Ultrasonic Cleaning for Particle Removal -- 5.6.1 Cleaning Process Parameters -- 5.7 Determination of Residual Particles on Surfaces -- 5.8 Ultrasonic Aqueous Cleaning Equipment and Process -- 5.9 Precision Cleaning -- 5.10 Contaminants -- 5.11 Ultrasonic Cavitation Forces and Surface Cleaning -- 5.11.1 Requirements to Produce Cavitations -- 5.12 Cleaning Chemistry -- 5.12.1 Selection of Ultrasonic Cleaning Chemicals -- 5.12.2 Maximizing the Overall Cleaning Effect -- 5.13 Mechanism of Cleaning -- 5.13.1 Particle Removal -- 5.13.2 Particle Removal Mechanism -- 5.13.3 Prevention of Particle Re-deposition.

5.13.4 Cleaning Chemistry and Particle Removal -- 5.14 Cavitation Erosion -- 5.15 Summary -- References -- 6 Megasonic Cleaning for Particle Removal -- 6.1 Introduction -- 6.1.1 Wafer Cleaning -- 6.2 Principles of Megasonic Cleaning -- 6.2.1 Acoustic Streaming -- 6.2.2 Acoustic Cavitation -- 6.3 Particle Removal Mechanisms During Megasonic Cleaning -- 6.4 Types of Megasonic Systems -- 6.5 Particle Removal and Feature Damage in Megasonic Cleaning -- 6.6 Summary -- References -- 7 High Speed Air Jet Removal of Particles from Solid Surfaces -- 7.1 Introduction -- 7.2 Fundamental Characteristics of the Air Jet -- 7.3 Fundamentals of Air Jet Particle Removal -- 7.3.1 Definition of Parameters and Removal Efficiency -- 7.3.2 Effect of Pressure Drop ΔPn and Distance d on Removal Efficiency η [22] -- 7.3.3 Effect of Impinging Angle θ [21, 23] -- 7.3.4 Effect of Scan Speed of Air Jet -- 7.3.5 Other Parameters Affecting the Removal Efficiency -- 7.4 New Methods Using Air Jet -- 7.4.1 Pulsed-jet Method -- 7.4.2 Vibrating Air Jet Method -- 7.5 Summary and Prospect -- List of Symbols -- References -- 8 Droplet Spray Technique for Particle Removal -- 8.1 Introduction -- 8.2 Droplet Impact Phenomena -- 8.2.1 Impact on Solid Surface -- 8.2.2 Crown Formation -- 8.2.3 Impact on Liquid Film -- 8.3 Cleaning Process Window -- 8.3.1 Theoretical Studies -- 8.3.2 Experimental Studies -- 8.4 Droplet Spray Technique for Semiconductor Wafer Cleaning -- 8.4.1 Initial Studies -- 8.4.2 Droplet Distribution Optimization -- 8.4.3 Advanced Spray -- 8.5 Summary -- References -- 9 Laser-Induced High-Pressure Micro-Spray Process for Nanoscale Particle Removal -- 9.1 Introduction -- 9.1.1 Nanoscale Contamination Control -- 9.1.2 Review of Physical Cleaning Methods -- 9.2 Concept of Droplet Opto-Hydrodynamic Cleaning (DOC) -- 9.3 Micro-Spray Generation by LIB.

9.4 Mechanisms of Particle Removal by Laser-Induced Spray Jet -- 9.5 Generation of Micro-Spray Jet -- 9.5.1 Experimental Setup -- 9.5.2 Hydrodynamic Phenomena -- 9.6 Nanoscale Particle Removal -- 9.6.1 Experimental Setup -- 9.6.2 Optimization of Micro-Spray Jet -- 9.6.3 Effect of Process Parameters -- 9.6.4 Sub-100 nm Particle Cleaning -- 9.7 Summary -- References -- 10 Wiper-Based Cleaning of Particles from Surfaces -- 10.1 Introduction -- 10.1.1 Why Wipe? -- 10.1.2 Particle Cleanliness -- 10.2 Basic Mechanism of Wiping for Cleaning of Particles and Other Contaminants -- 10.2.1 Why Wiping Works -- 10.2.2 Wiping Mechanisms for Particle Removal -- 10.2.3 Contamination Types -- 10.3 Various Types of Wipers -- 10.3.1 Fabric Construction -- 10.3.2 Edge Type -- 10.3.3 Selecting a Cleanroom Wiper -- 10.4 Proper Ways to Carry Out Wiping or How to Use Wipers Properly -- 10.4.1 The Purpose of Wiping -- 10.4.2 Wiping Methods -- 10.4.3 Introductory Training Example for Wiper-Based Particle Cleaning -- 10.5 Characterization of Wipers -- 10.5.1 Methods to Assess Wiper Particle and Fiber Contamination Levels -- 10.6 Results Obtained Using Wiping -- 10.6.1 Test Method -- 10.6.2 Experimental Setup -- 10.6.3 Data Collection -- 10.6.4 Results -- 10.6.5 Comments -- 10.7 Future Directions -- 10.7.1 Nanotechnology -- 10.7.2 Microfiber Technology -- 10.8 Summary -- References -- 11 Application of Strippable Coatings for Removal of Particulate Contaminants -- 11.1 Introduction -- 11.2 Coating Description -- 11.2.1 Coating Properties -- 11.3 Types of Strippable Coatings -- 11.3.1 Solvent-Based Coatings -- 11.3.2 Water-Based Coatings -- 11.3.3 Coatings for Removal of Radioactive Contamination -- 11.3.4 Hazardous Materials Cleaning -- 11.3.5 UV Curable Coatings -- 11.4 Issues with Strippable Coatings -- 11.5 Precision Cleaning Applications -- 11.5.1 Optical Surfaces.

11.5.2 Other Applications -- 11.5.3 Non-Optical Cleaning Applications -- 11.6 Summary -- Disclaimer -- References -- 12 Cryoaerosol Cleaning of Particles from Surfaces -- 12.1 Introduction -- 12.2 History of Cryoaerosol Cleaning -- 12.3 Thermodynamics of Cryoaerosol Processes -- 12.3.1 Thermodynamics of CO2 Aerosol Process -- 12.3.2 Thermodynamics of Ar/N2 Cryogenic Aerosol System -- 12.4 Cleaning Mechanism -- 12.5 Factors Affecting Cleaning Performance -- 12.5.1 Moisture Control -- 12.5.2 Control of Electrostatic Charging -- 12.5.3 Airflow Management -- 12.5.4 Aerosol Particle Size Control -- 12.5.5 Gas Purity -- 12.6 Results Obtained by Cryoaerosol Cleaning -- 12.7 Summary and Prospects -- References -- 13 Supercritical Carbon Dioxide Cleaning: Relevance to Particle Removal -- 13.1 Introduction -- 13.2 Surface Cleanliness Levels -- 13.3 Dense Phase Fluids -- 13.3.1 Supercritical Carbon Dioxide -- 13.4 Principles of Supercritical CO2 Cleaning -- 13.4.1 Cleaning Systems -- 13.4.2 Costs -- 13.5 Advantages and Disadvantages of Supercritical CO2 Cleaning -- 13.5.1 Advantages -- 13.5.2 Disadvantages -- 13.6 Applications -- 13.6.1 Cleaning Spacecraft Components and Planetary Protection -- 13.6.2 Cleaning of Printing Rollers -- 13.6.3 Carbon Nanotubes -- 13.6.4 Soil Cleaning with Ionic Liquids and SCCO2 -- 13.6.5 Conservation of Historical Art Objects and Structures -- 13.6.6 Sterilization -- 13.6.7 Monitoring of SCCO2 Precision Cleaning Processes with the Quartz Crystal Microbalance -- 13.7 Summary and Conclusions -- Acknowledgement -- Disclaimer -- References -- 14 The Use of Surfactants to Enhance Particle Removal from Surfaces -- 14.1 Introduction -- 14.2 Solid-Solid Interactions -- 14.3 Introduction to Surfactants -- 14.4 Surfactant Adsorption at Solid Surfaces -- 14.5 Surfactants and Particulate Removal -- 14.6 Prospects -- 14.7 Summary.

Acknowledgements.

The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal. 2. Mechanisms of particle adhesion and removal. 3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions. 4. Mechanics of adhesion of micro- and  nanoscale particles. 5. Various factors affecting particle adhesion to a variety of substrates. 6. Surface modification techniques to modulate particle adhesion. 7. Various cleaning methods (both wet & dry) for particle removal. 8. Relevance of particle adhesion in a host of technologies ranging from simple to ultra-sophisticated.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.