Quantum Dissipative Systems. (Record no. 84793)

MARC details
000 -LEADER
fixed length control field 11582nam a22005293i 4500
001 - CONTROL NUMBER
control field EBC1679496
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20191126114812.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 191125s2008 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9789812791795
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9789812791627
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC1679496
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL1679496
035 ## - SYSTEM CONTROL NUMBER
System control number (CaPaEBR)ebr10255708
035 ## - SYSTEM CONTROL NUMBER
System control number (CaONFJC)MIL193400
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)879023663
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QC174.12.W45 2008
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 530.12
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Weiss, Ulrich.
9 (RLIN) 89571
245 10 - TITLE STATEMENT
Title Quantum Dissipative Systems.
250 ## - EDITION STATEMENT
Edition statement 3rd ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Singapore :
Name of producer, publisher, distributor, manufacturer World Scientific Publishing Co Pte Ltd,
Date of production, publication, distribution, manufacture, or copyright notice 2008.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2008.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (527 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
490 1# - SERIES STATEMENT
Series statement Series in Modern Condensed Matter Physics Ser. ;
Volume/sequential designation v.13
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Intro -- Contents -- Preface -- Preface to the Second Edition -- Acknowledgements -- Preface to the First Edition -- 1 Introduction -- I GENERAL THEORY OF OPEN QUANTUM SYSTEMS -- 2 Diverse limited approaches: a brief survey -- 2.1 Langevin equation for a damped classical system -- 2.2 New schemes of quantization -- 2.3 Traditional system-plus-reservoir methods -- 2.3.1 Quantum-mechanical master equations for weak coupling -- 2.3.2 Operator Langevin equations for weak coupling -- 2.3.3 Quantum and quasiclassical Langevin equation -- 2.3.4 Phenomenological methods -- 2.4 Stochastic dynamics in Hilbert space -- 3 System-plus-reservoir models -- 3.1 Harmonic oscillator bath with linear coupling -- 3.1.1 The Hamiltonian of the global system -- 3.1.2 The road to the classical generalized Langevin equation -- 3.1.3 Phenomenological modeling -- 3.1.4 Quasiclassical Langevin equation -- 3.1.5 Ohmic and frequency-dependent damping -- 3.1.6 Rubin model -- 3.2 The Spin-Boson model -- 3.2.1 The model Hamiltonian -- 3.2.2 Josephson two-state systems: flux and charge qubit -- 3.3 Microscopic models -- 3.3.1 Acoustic polaron: one-phonon and two-phonon coupling -- 3.3.2 Optical polaron -- 3.3.3 Interaction with fermions (normal and superconducting) -- 3.3.4 Superconducting tunnel junction -- 3.4 Charging and environmental effects in tunnel junctions -- 3.4.1 The global system €or single electron tunneling -- 3.4.2 Resistor, inductor and transmission lines -- 3.4.3 Charging effects in Josephson junctions -- 3.5 Nonlinear quantum environments -- 4 Imaginary-time path integrals -- 4.1 The density matrix: general concepts -- 4.2 Effective action and equilibrium density matrix -- 4.2.1 Open system with bilinear coupling to a harmonic reservoir -- 4.2.2 State-dependent memory-friction -- 4.2.3 Spin-boson model.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 4.2.4 Acoustic polaron and defect tunneling: one-phonon coupling -- 4.2.5 Acoustic polaron: two-phonon coupling -- 4.2.6 Tunneling between surfaces: one-phonon coupling -- 4.2.7 Optical polaron -- 4.2.8 Heavy particle in a metal -- 4.2.9 Heavy particle in a superconductor -- 4.2.10 Effective action for a Josephson junction -- 4.2.11 Electromagnetic environment -- 4.3 Partition function of the open system -- 4.3.1 General path integral expression -- 4.3.2 Semiclassical approximation -- 4.3.3 Partition function of the damped harmonic oscillator -- 4.3.4 Functional measure in Fourier space -- 4.3.5 Partition function of the damped harmonic oscillator revisited -- 4.4Quantum statistical expectation values in phase space -- 4.4.1 Generalized Weyl correspondence -- 4.4.2 Generalized Wigner function and expectation values -- 5 Real-time path integrals and dynamics -- 5.1 Feynman-Vernon method for a product initial state -- 5.2 Decoherence and friction -- 5.3 General initial states and preparation function -- 5.4 Complex-time path integral for the propagating function -- 5 5 Real-time path integral for the propagating function -- 5.5.1 Extremal paths -- 5.5.2 Classical limit -- 5.5.3 Semiclassical limit: quasiclassical Langevin equation -- 5.6 Stochastic unraveling of influence functionals -- 5.7 Brief summary and outlook -- II FEW SIMPLE APPLICATIONS -- 6 Damped harmonic oscillator -- 6.1 Fluctuation-dissipation theorem -- 6.2 Stochastic modeling -- 6.3 Susceptibility for Ohmic friction and Drude damping -- 6.3.1 Strict Ohmic friction -- 6.3.2 Drude damping -- 6.4 The position autocorrelation function -- 6.4.1 Ohmic damping -- 6.4.2 Algebraic spectral density -- 6.5 Partition function, internal energy and density of states -- 6.5.1 Partition function and internal energy -- 6.5.2 Spectral density of states -- 6.6 Mean square of position and momentum.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 6.6.1 General expressions for coloured noise -- 6.6.2 Strict Ohmic case -- 6.6.3 Ohmic friction with Drude regularization -- 6.7 Equilibrium density matrix -- 6.7.1 Purity -- 7 Quantum Brownian free motion -- 7.1 Spectral density. damping function and mass renormalization -- 7.2 Displacement correlation and response function -- 7.3 Ohmicdamping -- 7.4 Frequency-dependent damping -- 7.4.1 Response function and mobility -- 7.4.2 Mean square displacement -- 8 The thermodynamic variational approach -- 8.1 Centroid and the effective classical potential -- 8.1.1 Centroid -- 8.1.2 The effective classical potential -- 8.2 Variational method -- 8.2.1 Variational method for the free energy -- 8.2.2 Variational method for the effective classical potential -- 8.2.3 Variational perturbation theory -- 8.2.4 Expectation values in coordinate and phase space -- 9 Suppression of quantum coherence -- 9.1 Nondynamical versus dynamical environment -- 9.2 Suppression of transversal and longitudinal interferences -- 9.3 Localized bath modes and universal decoherence -- 9.3.1 A model with localized bath modes -- 9.3.2 Statistical average of paths -- 9.3.3 Ballistic motion -- 9.3.4 Diffusive motion -- III QUANTUM STATISTICAL DECAY -- 10 Introduction -- 11 Classical rate theory: a brief overview -- 11.1 Classical transition state theory -- 11.2 Moderate-to-strong-damping regime -- 11.3 Strong damping regime -- 11.4 Weak-damping regime -- 1 2 Quantum rate theory: basic methods -- 12.1 Formal rate expressions in terms of flux operators -- 12.2 Quantum transition state theory -- 12.3 Semiclassical limit -- 12.4 Quantum tunneling regime -- 12.5 Free energy method -- 12.6 Centroid method -- 13 Multidimensional quantum rate theory -- 14 Crossover from thermal to quantum decay -- 14.1 Normal mode analysis at the barrier top -- 14.2 Turnover theory for activated rate processes.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 14.3 The crossover temperature -- 15 Thermally activated decay -- 15.1 Rate formula above the crossover regime -- 15.2 Quantum corrections in the preexponential factor -- 15.3 The quantum Smoluchowski equation approach -- 15.4 Multidimensional quantum transition state theory -- 16 The crossover region -- 16.1 Beyond steepest descent above To -- 16.2 Beyond steepest descent below To -- 16.3 The scaling region -- 17 Dissipative quantum tunneling -- 17.1 The quantum rate formula -- 17.2 Thermal enhancement of macroscopic quantum tunneling -- 17.3 Quantum decay in a cubic potential for Ohmic friction -- 17.3.1 Bounce action and quantum prefactor -- 17.3.2 Analytic results for strong Ohmic dissipation -- 17.4 Quantum decay in a tilted cosine washboard potential -- 17.5 Concluding remarks -- IV THE DISSIPATIVE TWO-STATE SYSTEM -- 18 Introduction -- 18.1 Truncation of the double-well to the two-state system -- 18.1.1 Shifted oscillators and orthogonality catastrophe -- 18.1.2 Adiabatic renormalization -- 18.1.3 Renormalized tunnel matrix element -- 18.1.4 Polaron transformation -- 18.2 Pair interaction in the charge picture -- 18.2.1 Analytic expression for any s and arbitrary cutoff w, -- 18.2.2 Ohmic dissipation and universality limit -- 19 Thermodynamics -- 19.1 Partition function and specific heat -- 19.1.1 Exact formal expression for the partition function -- 19.1.2 Static susceptibility and specific heat -- 19.1.3 The self-energy method -- 19.1.4 The limit of high temperatures -- 19.1.5 Noninteracting-kink-pair approximation -- 19.1.6 Weak-damping limit -- 19.1.7 The self-energy method revisited: partial resummation -- 19.2 Ohmic dissipation -- 19.2.1 General results -- 19.2.2 The special case K = f -- 19.3 Non-Ohmic spectral densities -- 19.3.1 The sub-ohmic case -- 19.3.2 The super-ohmic case.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 19.4 Relation between the Ohmic TSS and the Kondo model -- 19.4.1 Anisotropic Kondo model -- 19.4.2 Resonance level model -- 19.5 Equivalence of the Ohmic TSS with the l/r2 Ising model -- 20 Electron transfer and incoherent tunneling -- 20.1 Electron transfer -- 20.1.1 Adiabatic bath -- 20.1.2 Marcus theory for electron transfer -- 20.2 Incoherent tunneling in the nonadiabatic regime -- 20.2.1 General expressions for the nonadiabatic rate -- 20.2.2 Probability for energy exchange: general results -- 20.2.3 The spectral probability density for absorption at T = 0 -- 20.2.4 Crossover from quantum-mechanical to classical behaviour -- 20.2.5 The Ohmic case -- 20.2.6 Exact nonadiabatic rates for K = l / 2 and K = 1 -- 20.2.7 The sub-ohmic case (0 1) -- 20.2.9 Incoherent defect tunneling in metals -- 20.3 Single charge tunneling -- 20.3.1 Weak-tunneling regime -- 20.3.2 The current-voltage characteristics -- 20.3.3 Weak tunneling of 1D interacting electrons -- 20.3.4 Tunneling of Cooper pairs -- 20.3.5 Tunneling of quasiparticles -- 21 Two-state dynamics -- 21.1 Initial preparation, expectation values, and correlations -- 21.1.1 Product initial state -- 21.1.2 Thermal initial state -- 21.2 Exact formal expressions for the system dynamics -- 21.2.1 Sojourns and blips -- 21.2.2 Conditional propagating functions -- 21.2.3 The expectation values (0, ) t ( j = z, y, z ) -- 21.2.4 Correlation and response function of the populations -- 21.2.5 Correlation and response function of the coherences -- 21.2.6 Generalized exact master equation and integral relations -- 21.3 The noninteracting-blip approximation (NIBA) -- 21.3.1 Symmetric Ohmic system in the scaling limit -- 21.3.2 Weak Ohmic damping and moderate-to-high temperature -- 21.3.3 The super-ohmic case.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 21.4 Weak-coupling theory beyond the NIBA for a biased system.
520 ## - SUMMARY, ETC.
Summary, etc. Key Features:Contains changes, extensions, and additions from the second edition to better meet the requests of both newcomers to the field and advanced readersFocuses on nonequilibrium quantum transport in quantum impurity systems from the viewpoint of dissipative quantum mechanicsPresents a broad perspective to open up this rapidly developing field to interested researchers normally working in different fields.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Quantum theory.;Mathematical physics.;Thermodynamics.;Path integrals.
9 (RLIN) 89572
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
9 (RLIN) 89573
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Weiss, Ulrich
Title Quantum Dissipative Systems
Place, publisher, and date of publication Singapore : World Scientific Publishing Co Pte Ltd,c2008
International Standard Book Number 9789812791627
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Series in Modern Condensed Matter Physics Ser.
9 (RLIN) 89574
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/thebc/detail.action?docID=1679496">https://ebookcentral.proquest.com/lib/thebc/detail.action?docID=1679496</a>
Public note Click to View
887 ## - NON-MARC INFORMATION FIELD
Content of non-MARC field EBK
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Ebrary
Holdings
Withdrawn status Lost status Damaged status Not for loan Home library Current library Date acquired Total Checkouts Barcode Date last seen Price effective from Koha item type
        Afghanistan Afghanistan 26/11/2019   EBKAF00093355 26/11/2019 26/11/2019 Ebrary
        Algeria Algeria           Ebrary
        Cyprus Cyprus           Ebrary
        Egypt Egypt           Ebrary
        Libya Libya           Ebrary
        Morocco Morocco           Ebrary
        Nepal Nepal 26/11/2019   EBKNP00093355 26/11/2019 26/11/2019 Ebrary
        Sudan Sudan           Ebrary
        Tunisia Tunisia           Ebrary