Quantum Mechanics : (Record no. 78505)

MARC details
000 -LEADER
fixed length control field 12204nam a22005053i 4500
001 - CONTROL NUMBER
control field EBC482303
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20191126105105.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 191125s1996 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783527618200
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9780471157588
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC482303
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL482303
035 ## - SYSTEM CONTROL NUMBER
System control number (CaPaEBR)ebr10275111
035 ## - SYSTEM CONTROL NUMBER
System control number (CaONFJC)MIL201056
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)435669003
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QC174.12 -- .S534 1997eb
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 530.1/2
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Singh, Jasprit.
9 (RLIN) 61655
245 10 - TITLE STATEMENT
Title Quantum Mechanics :
Remainder of title Fundamentals and Applications to Technology.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Hoboken :
Name of producer, publisher, distributor, manufacturer John Wiley & Sons, Incorporated,
Date of production, publication, distribution, manufacture, or copyright notice 1996.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2009.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (538 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note QUANTUM MECHANICS Fundamentals and Applications to Technology -- CONTENTS -- PREFACE -- INTRODUCTION -- QUANTUM MECHANICS AND TECHNOLOGY -- Some Technology Needs and Challenges -- GUIDELINES FOR THE INSTRUCTOR -- SOME IMPORTANT REFERENCES -- Historical Development of Quantum Mechanics -- Textbooks -- General -- 1 A JOLT FOR CLASSICAL PHYSICS -- 1.1 INTRODUCTION -- 1.1.1 A Bit of History -- 1.1.2 Some Simple Questions -- 1.2 SOME EXPERIMENTS THAT DEFIED CLASSICAL PHYSICS -- 1.3 A PREVIEW OF THE TRANSITION FROM CLASSICAL TO QUANTUM PHYSICS -- 1.3.1 Newtonian Mechanics -- 1.3.2 Classical Wave Phenomena -- 1.3.3 The Wave-Particle Duality: A Hint in Optics -- 1.4 MODERN CLASSICAL MECHANICS: A BRIEF OVERVIEW -- 1.4.1 The Lagrangian Equations -- 1.4.2 Hamilton Equations of Motion -- 1.4.3 The Poisson Bracket Description -- 1.4.4 The Hamilton-Jacobi Formulation -- 1.5 THE HAMILTON-JACOBI THEORY AND WAVE MECHANICS -- 1.6 CHAPTER SUMMARY -- 2 THE MATHEMATICAL FORMULATION OF QUANTUM MECHANICS -- 2.1 INTRODUCTION -- 2.1.1 What Are We Trying to Do? -- 2.2 THE SCHRÖDINGER EQUATION -- 2.3 THE WAVE AMPLITUDE -- 2.3.1 Normalization of the Wavefunction -- 2.3.2 The Probability Current Density -- 2.3.3 Expectation Values -- 2.4 WAVES, WAVEPACKETS AND UNCERTAINTY -- 2.4.1 Physical Observables and Commutation Relations -- 2.4.2 Properties of a Wavepacket: The Ehrenfest Theorem -- 2.5 HOW DOES ONE SOLVE THE SCHRÖDINGER EQUATION? -- 2.5.1 Time-Independent Hamiltonian Problem -- 2.5.2 Time-Dependent Hamiltonian -- 2.6 SOME MATHEMATICAL TOOLS FOR QUANTUM MECHANICS -- 2.6.1 Boundary Conditions on the Wavefunction -- 2.6.2 Basis Functions and the Eigenvalue Matrix -- 2.6.3 The Dirac δ-function -- 2.6.4 Dirac Notation: Bra and Ket -- 2.6.5 Important Representations in Quantum Mechanics -- 2.6.6 Hilbert Space -- 2.6.7 Hermitian and Unitary Matrices.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 2.7 EQUATIONS OF MOTION -- 2.8 CHAPTER SUMMARY -- 2.9 PROBLEMS -- 3 PARTICLES IN SIMPLE POTENTIALS -- 3.1 INTRODUCTION -- 3.2 THE FREE PARTICLE PROBLEM AND DENSITY OF STATES -- 3.2.1 Density of States for a Three-Dimensional System -- 3.2.2 Density of States in Sub-Three-Dimensional Systems -- 3.3 PARTICLE IN A QUANTUM WELL -- 3.3.1 The Square Quantum Well -- 3.3.2 Particle in a Triangular Quantum Well -- 3.3.3 Particle in an Arbitrary Quantum Well -- 3.3.4 Application Example: Confined Levels in Semiconductor Transistors -- 3.4 PARTICLE IN A PERIODIC POTENTIAL: BLOCH THEOREM -- 3.4.1 The Kronig-Penney Model for Bandstructure -- 3.4.2 Significance of the k-Vector -- 3.5 THE HARMONIC OSCILLATOR -- 3.6 THE MATRIX FORMULATION OF THE HARMONIC OSCILLATOR -- 3.7 HARMONIC OSCILLATOR: QUANTUM AND CLASSICAL TREATMENT -- 3.8 CHAPTER SUMMARY -- 3.9 PROBLEMS -- 4 THE TUNNELING PROBLEM -- 4.1 INTRODUCTION -- 4.2 THE GENERAL TUNNELING PROBLEM -- 4.2.1 Approaches to the Tunneling Problem -- 4.3 STATIONARY STATE APPROACH TO TUNNELING -- 4.3.1 Tunneling through a Square Potential Barrier -- 4.3.2 Application Example: Ohmic Contacts -- 4.3.3 Application Example: Field Emission Devices -- 4.3.4 Application Example: Scanning Tunneling Microscopy -- 4.3.5 Application Example: Josephson Junction -- 4.4 TUNNELING THROUGH MULTIPLE BARRIERS: RESONANT TUNNELING -- 4.4.1 Application Example: Resonant Tunneling Diode -- 4.5 TIME-DEPENDENT APPROACH TO TUNNELING -- 4.5.1 Propagation of a Wavepacket -- 4.6 A NUMERICAL APPROACH TO WAVEPACKET EVOLUTION -- 4.7 QUASI-BOUND STATES AND TRANSMISSION RESONANCE WIDTHS -- 4.8 CHAPTER SUMMARY -- 4.9 PROBLEMS -- 5 PARTICLES IN SPHERICALLY SYMMETRIC POTENTIALS -- 5.1 INTRODUCTION -- 5.2 SPHERICALLY SYMMETRIC POTENTIAL: GENERAL SOLUTION -- 5.3 THE ONE-ELECTRON ATOM AND THE HYDROGEN ATOM PROBLEM.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 5.3.1 Application Example: Doping of Semiconductors -- 5.3.2 Application Example: Excitons in Semiconductors -- 5.4 FROM THE HYDROGEN ATOM TO THE PERIODIC TABLE: A QUALITATIVE VIEW -- 5.5 PARTICLE IN A THREE-DIMENSIONAL SQUARE WELL -- 5.6 QUASI-BOUND STATES AND TUNNELING IN SPHERICALLY SYMMETRIC POTENTIALS: RADIOACTIVITY -- 5.7 CHAPTER SUMMARY -- 5.8 PROBLEMS -- 6 PHYSICAL SYMMETRIES AND CONSERVATION LAWS -- 6.1 INTRODUCTION -- 6.2 SYMMETRY AND CONSERVATION LAWS -- 6.3 SPATIAL TRANSLATION AND MOMENTUM CONSERVATION -- 6.4 TIME DISPLACEMENT SYMMETRY -- 6.5 ROTATION SYMMETRY AND ANGULAR MOMENTUM -- 6.6 ANGULAR MOMENTUM: EIGENVALUES AND EIGENFUNCTIONS -- 6.7 SPIN ANGULAR MOMENTUM -- 6.8 COMBINATION OF ANGULAR MOMENTUM STATES -- 6.8.1 Clebsch-Gordon or Wigner Coefficients -- 6.8.2 Application Example: Bandedge States in Optical Materials -- 6.9 CHAPTER SUMMARY -- 6.10 PROBLEMS -- 7 IDENTICAL PARTICLES AND SECOND QUANTIZATION -- 7.1 INTRODUCTION -- 7.2 A SIMPLE EXPERIMENT WITH IDENTICAL PARTICLES -- 7.3 THE N-IDENTICAL-PARTICLE STATE -- 7.4 EXCHANGE INTERACTION -- 7.4.1 Application Example: Binding Energy of the H2+ Molecule Ion -- 7.4.2 The Neutral Hydrogen Molecule: Para- and Ortho-Hydrogen -- 7.5 THE SECOND QUANTIZATION -- 7.5.1 A Continuous Elastic System: Second Quantization -- 7.6 QUANTIZATION OF THE ELECTROMAGNETIC FIELD -- 7.6.1 The Classical Electromagnetic FieId -- 7.6.2 Second Quantization of the Radiation Field -- 7.7 QUANTIZATION OF LAWICE VIBRATIONS: PHONONS -- 7.8 PLASMONS, MAGNONS AND POLARONS -- 7.8.1 Collective Electron Vibrations: Plasmons -- 7.8.2 Spin Waves: Magnons -- 7.8.3 Electron-Lattice Polarization Excitation: Polarons -- 7.9 QUANTIZATION OF THE SCHRÖDINGER WAVE EQUATION FOR ELECTRONS -- 7.10 CLASSICAL AND QUANTUM STATISTICS -- 7.10.1 Application Example: Metals, Insulators and Semiconductors.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 7.10.2 Application Example: Normal and Superconducting States -- 7.10.3 Ordinary and Supeffluid Liquid Helium -- 7.11 CHAPTER SUMMAFLY -- 7.12 PROBLEMS -- 8 APPROXIMATION METHODS: TIME-INDEPENDENT PROBLEMS -- 8.1 INTRODUCTION -- 8.2 STATIONARY PERTURBATION THEORY -- 8.2.1 Non-degenerate Case -- 8.2.2 Degenerate Case -- 8.3 SOME APPLICATIONS OF PERTURBATION THEORY -- 8.3.1 Band Theory and Effective Masses -- 8.3.2 Van der Waals Interactions -- 8.4 VARIATIONAL METHOD -- 8.4.1 Application Example: Exciton in Quantum Wells -- 8.5 THE WKB APPROXIMATION -- 8.5.1 Application to the Tunneling Problem -- 8.5.2 Application to the Quantization Rules -- 8.6 RESONANT COUPLING IN DOUBLE WELLS -- 8.6.1 Application Examples: Ammonia Molecules and Organic Dyes -- 8.6.2 Application Example: Atomic Clock -- 8.7 CHAPTER SUMMARY -- 8.8 PROBLEMS -- 9 TIME-DEPENDENT PROBLEMS: APPROXIMATION METHODS -- 9.1 INTRODUCTION -- 9.2 TIME-DEPENDENT PERTURBATION THEORY -- 9.2.1 Harmonic Perturbation -- 9.2.2 Transition Probability for Continuous Spectra -- 9.2.3 Higher Order Perturbation Theory -- 9.3 APPLICATION EXAMPLE: ELECTRON-PHOTON INTERACTION -- 9.3.1 Interband Transitions in Bulk Semiconductors -- 9.3.2 Interband Transitions in Quantum Wells -- 9.4 APPLICATION EXAMPLE: ELECTRON-PHONON SCATTERING -- 9.5 APPLICATION EXAMPLE: INDIRECT INTERBAND TRANSITIONS -- 9.6 APPLICATION EXAMPLE: CHARGE INJECTION AND RADIATIVE RECOMBINATION -- 9.6.1 Phosphors and Fluorescence -- 9.7 SLOWLY VARYING HAMILTONIAN: ADIABATIC APPROXIMATION -- 9.7.1 Adiabatic Approximation and Electron-Phonon Interactions -- 9.8 SUDDEN APPROXIMATION -- 9.9 CHAPTER SUMMARY -- 9.10 PROBLEMS -- 10 COLLISIONS AND SCATTERING -- 10.1 INTRODUCTION -- 10.2 TWO-PARTICLE COLLISIONS: CENTER OF MASS AND LABORATORY COORDINATE DESCRIPTION -- 10.2.1 Scattering Cross Section.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 10.2.2 Scattering Angles in Laboratory and Center-of-Mass Systems -- 10.3 SCATTERING AS A STATIONARY STATE PROBLEM -- 10.3.1 An Integral Equation for Scattering -- 10.3.2 Microscopic Reversibility and Optical Theorem -- 10.4 THE BORN APPROXIMATION -- 10.4.1 Validity of the Born Approximation -- 10.5 PARTIAL WAVE ANALYSIS -- 10.5.1 Calculation of the Phase Shifts -- 10.6 APPLICATION EXAMPLE: SCREENED COULOMBIC POTENTIAL SCATTERING -- 10.6.1 Scattering Rate and Macroscopic Transport Properties -- 10.6.2 Ionized Impurity Limited Mobility -- 10.7 APPLICATION EXAMPLE: ALLOY SCATTERING -- 10.8 APPLICATION EXAMPLE: INTERFACE ROUGHNESS SCATTERING -- 10.9 APPLICATION EXAMPLE: CARRIER-CARRIER SCATTERING -- 10.9.1 Electron-Hole Scattering -- 10.9.2 Electron-Electron Scattering -- 10.9.3 Auger Processes and Impact Ionization -- 10.10 CHAPTER SUMMARY -- 10.11 PROBLEMS -- 11 MAGNETIC EFFECTS -- 11.1 INTRODUCTION -- 11.2 CHARGED PARTICLES IN A MAGNETIC FIELD: GENERAL HAMILTONIAN -- 11.3 FREE ELECTRONS IN A MAGNETIC FIELD -- 11.4 THE AHARONOV-BOHM EFFECT -- 11.5 APPLICATION EXAMPLE : SUPERCONDUCTING DEVICES -- 11.6 THE QUANTUM HALL EFFECT -- 11.7 THE ZEEMAN EFFECT -- 11.8 SPIN-ORBIT COUPLING -- 11.9 DIAMAGNETIC AND PARAMAGNETIC EFECTS -- 11.9.1 Diamagnetic Effect -- 11.9.2 Paramagnetic Effect -- 11.9.3 Paramagnetism in the Conduction Electrons in Metals -- 11 9 4 Application Example: Cooling by Demagnetization -- 11.10 EXCHANGE INTERACTION: FERROMAGNETISM AND ANTIFERROMAGNETISM -- 11.10.1 Exchange Interaction and Ferromagnetism -- 11.10.2 Antiferromagnetic Ordering -- 11.10.3 Application Example: Magnetic Recording -- 11.11 MAGNETIC RESONANCE EFFECTS -- 11.11.1 Nuclear Magnetic Resonance -- 11.12 CHAPTER SUMMARY -- 11.13 PROBLEMS -- APPENDIX -- A MODERN CLASSICAL PHYSICS: A REVIEW -- A.1 LAGRANGIAN EQUATIONS -- A.2 HAMILTON EQUATIONS OF MOTION.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note A.3 THE HAMILTON-JACOBI FORMULATION.
520 ## - SUMMARY, ETC.
Summary, etc. Explore the relationship between quantum mechanics and information-age applications This volume takes an altogether unique approach to quantum mechanics. Providing an in-depth exposition of quantum mechanics fundamentals, it shows how these concepts are applied to most of today's information technologies, whether they are electronic devices or materials. No other text makes this critical, essential leap from theory to real-world applications. The book's lively discussion of the mathematics involved fits right in with contemporary multidisciplinary trends in education: Once the basic formulation has been derived in a given chapter, the connection to important technological problems is summarily described. A book for the information age, Quantum Mechanics: Fundamentals and Applications to Technology promises to become a standard in departments of electrical engineering, applied physics, and materials science, as well as physics. It is an excellent text for senior undergraduate and graduate students, and a helpful reference for practicing scientists, engineers, and chemists in the semiconductor and electronic industries.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Quantum theory.;Physics.
9 (RLIN) 61656
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
9 (RLIN) 61657
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Singh, Jasprit
Title Quantum Mechanics : Fundamentals and Applications to Technology
Place, publisher, and date of publication Hoboken : John Wiley & Sons, Incorporated,c1996
International Standard Book Number 9780471157588
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/thebc/detail.action?docID=482303">https://ebookcentral.proquest.com/lib/thebc/detail.action?docID=482303</a>
Public note Click to View
887 ## - NON-MARC INFORMATION FIELD
Content of non-MARC field EBK
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Ebrary
Holdings
Withdrawn status Lost status Damaged status Not for loan Home library Current library Date acquired Total Checkouts Barcode Date last seen Price effective from Koha item type
        Afghanistan Afghanistan 26/11/2019   EBKAF00036415 26/11/2019 26/11/2019 Ebrary
        Algeria Algeria           Ebrary
        Cyprus Cyprus           Ebrary
        Egypt Egypt           Ebrary
        Libya Libya           Ebrary
        Morocco Morocco           Ebrary
        Nepal Nepal 26/11/2019   EBKNP00036415 26/11/2019 26/11/2019 Ebrary
        Sudan Sudan           Ebrary
        Tunisia Tunisia           Ebrary