High-Performance Construction Materials :

Shi, Caijun.

High-Performance Construction Materials : Science and Applications. - 1 online resource (448 pages) - Engineering Materials for Technological Needs Ser. ; v.1 . - Engineering Materials for Technological Needs Ser. .

Intro -- Contents -- Preface -- Biographical Sketch for each Author -- Chapter 1 -- Chapter 2 -- Chapter 3 -- Chapter 4 -- Chapter 5 -- Chapter 6 -- Chapter 7 -- Chapter 8 -- Chapter 9 -- Chapter 1 Introduction Caijun Shi and Y. L. Mo -- 1.1 Historical Development of Construction and Uses of Construction Materials -- 1.1.1 Stone age habitats -- 1.1.2 River valley civilizations - The first steps in permanence -- 1.1.3 Construction in ancient Egypt -- 1.1.4 Construction in the Greek Era -- 1.1.5 Construction in the Romans times -- 1.1.6 The early industrial age (18th-19th Century) -- 1.1.7 Constructions in the 20th century - High rise steel structures/buildings -- 1.1.7.1 High rise steel structures/buildings -- 1.1.7.2 High rise concrete buildings -- 1.2 Recent Construction - High Performance Construction Materials -- 1.3 Design Codes and Specifications for Use of High Performance Construction Materials -- 1.4 Organization of This Book -- References -- Chapter 2 High Performance Concrete Caijun Shi, Y.L. Mo and H.B. Dhonde -- 2.1 Introduction -- 2.1.1 Historical development -- 2.1.2 Definitions of HPC -- 2.2 Constituents and Mixture Proportions of HPC -- 2.2.1 Constituents of HPC -- 2.2.1.1 Cement -- 2.2.1.2 Supplementary cementitious materials -- 2.2.1.3 Aggregate -- 2.2.1.4 Chemical admixtures -- 2.2.1.5 Water -- 2.2.2 Mixture proportions for HPC -- 2.3 Properties of High Performance Concrete -- 2.3.1 Workability -- 2.3.2 Strength -- 2.3.3 Stress-strain relationship and modulus of elasticity -- 2.3.4 Shrinkage -- 2.3.5 Creep -- 2.3.6 Durability of HPC -- 2.3.6.1 Introduction -- 2.3.6.2 Permeability -- 2.3.6.3 Transport of chloride ion in HPC -- 2.3.6.4 Chemical resistance -- 2.3.6.5 Frost resistance -- 2.3.6.6 Wear resistance -- 2.3.6.7 Fire resistance -- 2.4 Self-Consolidating Concrete. 2.4.1 Introduction -- 2.4.2 Constituents and mixing proportions -- 2.4.3 Testing of SCC -- 2.4.3.1 Introduction -- 2.4.3.2 Slump flow/VSI (filling ability/deformability and stability) -- 2.4.3.3 J-Ring (passing ability) -- 2.4.3.4 L-Box (passing ability) -- 2.4.3.5 Column segregation (stability) -- 2.4.4 Self-Consolidating Fiber Reinforced Concrete (SCFRC) -- 2.4.5 Properties of hardened SCC -- 2.4.5.1 Mechanical properties -- 2.4.5.2 Deformation -- 2.4.5.3 Bonding with aggregate or reinforcements -- 2.4.5.4 Long-term durability -- 2.4.5.5 Aesthetics -- 2.5 Specifications and Guidelines for HPC -- 2.5.1 Structural design of HSC -- 2.5.2 Performance specifications for HPC -- 2.5.3 Guidelines and specifications for SCC -- 2.6 Applications of HPC -- 2.6.1 Introduction -- 2.6.2 High rise buildings -- 2.6.3 Bridges -- 2.6.4 Application of SCC -- 2.7 Summary -- References -- Chapter 3 High Performance Fiber Reinforced Cement Composites Antoinie E. Naaman -- 3.1 Introduction -- 3.2 Definitions -- 3.2.1 Fiber reinforced cement (FRC) composites -- 3.2.2 High Performance Fiber Reinforced Cement (HPFRC) Composites -- 3.2.3 Stress at first cracking -- 3.2.4 Maximum post-cracking stress or composite strength -- 3.2.5 Strain-hardening and deflection-hardening FRC composites -- 3.3 Cement Matrices and Fibers for FRC Composites -- 3.3.1 Cement or cementitious matrices -- 3.3.2 Fibers for cement and concrete matrices -- 3.3.3 Micro-fibers -- 3.3.4 Current range of fiber geometric properties -- 3.4 Key Difference Between Fiber Reinforced Cement and Fiber Reinforced Polymeric Composites for Mechanical Modeling -- 3.5 Notation -- 3.6 Assumptions for Modeling and Simplified Model -- 3.7 Number of Fibers Per Unit Volume and Per Unit Area. 3.8 Stress and Strain in Composite at First Cracking of Matrix in Tension, ( , ) cc cc σ ε -- 3.8.1 Stress at first cracking -- 3.8.2 Strain at first cracking -- 3.8.3 Upper bound stress in composite at cracking of matrix -- 3.8.4 Case of non-circular fiber -- 3.9 Elastic Modulus of the Composite in the Uncracked State -- 3.10 Maximum Post-Cracking Stress: Composite Strength in Tension, σpc -- 3.10.1 Composite strength assuming all fibers fail simultaneously -- 3.10.2 Composite strength assuming all fibers pull-out simultaneously -- 3.10.2.1 Non-dimensional form -- 3.10.2.2 Upper bound limit -- 3.10.2.3 Example of 3D orientation -- 3.10.3 Case of non-circular fibers -- 3.11 Strain at Maximum Post-Cracking Stress, pc ε -- 3.12 General Pull-Out Response . Part III of Fig. 3.10(b) -- 3.13 Summary: Idealized Tensile Response for Modeling -- 3.14 Critical Volume Fraction of Fiber to Achieve Strain- Hardening Behavior in Tension -- 3.14.1 Graphical illustration -- 3.15 Critical Volume Fraction of Fiber to Achieve Deflection- Hardening Behavior in Bending -- 3.16 Example: Critical Volume Fraction of Fibers -- 3.17 Surface Energy in Tension -- 3.18 Experimental Observations of Tension, Compression, and Bending Response -- 3.19 Fiber-Matrix Reinforcing Effectiveness -- 3.20 Applications -- 3.20.1 Typical fiber contend and fiber volume fraction -- 3.20.2 Evolution in performance -- 3.21 Concluding Remarks -- 3.22 Acknowledgments -- 3.23 References -- Chapter 4 High Performance Steel Material and Structures for Earthquake Resistant Buildings Keh-Chyuan Tsai, Ying-Cheng Lin, Jui-Liang Lin, Sheng-Lin Lin and Po-Chien Hsiao -- 4.1 Introduction -- 4.1.1 Background -- 4.1.2 Structural design and specifications for high performance steel -- 4.2 High Performance Structural Steels. 4.2.1 TMCP: Thermo-mechanical controlled process steel -- 4.2.2 Characteristics of high performance steel plates -- 4.2.3 Non-TMCP high performance structural steel plates -- 4.3 Steel Plate Shear Wall Building System -- 4.3.1 General behavior of unstiffened SPSW -- 4.3.2 Seismic design of SPSW -- 4.3.2.1 Design procedure -- 4.3.2.2 Capacity design -- 4.3.2.3 Analytical method -- 4.3.2.4 Seismic design of buckling restrainers -- 4.3.3 Experimental responses of buckling restrained SPSWs -- 4.4 Buckling-Restrained Braced Frame System -- 4.4.1 General behavior of buckling-restrained braces (BRBs) -- 4.4.2 Seismic design of BRBF -- 4.4.2.1 Effects of various unbonding materials -- 4.4.2.2 Key mechanical properties of the BRBs -- 4.4.2.3 Slip resistant bolted connection details in brace end double-tee- to-gusset joints -- 4.4.2.4 Tube-to-tube tie connection designs for DCBRBs -- 4.4.3 Experimental responses of BRBFs -- 4.4.3.1 Tests on single story V-shaped BRB frames -- 4.4.3.2 All-metallic and detachable BRBs -- 4.4.3.3 Damage inspection and non-destructive testing of BRBs -- 4.4.3.4 Pseudo-dynamic tests of a full-scale 3-bay 3-story CFT/BRB composite frame -- 4.5 Application of SPSWs and BRBFs for Seismic-Resistant Structure -- 4.5.1 Application of SPSWs building -- 4.5.2 Example applications of double-core BRBS in Taiwan -- References -- Chapter 5 Advanced Fiber Reinforced Polymer Composites L. C. Hollaway -- 5.1 Introduction -- 5.2 Reinforcement Mechanism of Fibre Reinforced Polymer Composites -- 5.2.1 Introduction -- 5.2.2 The polymer -- 5.2.2.1 Thermoplastic polymer -- 5.2.2.2 Thermosetting polymers -- 5.2.2.3 The elastomer -- 5.2.2.4 Epoxies (Thermosetting polymers) -- 5.2.2.5 Vinlyesters (Thermosetting polymers) -- 5.2.2.6 Unsaturated polyesters (Thermosetting polymers) -- 5.2.3 The mechanical and physical properties of the polymer. 5.3 The Fibre -- 5.3.1 The glass fibres -- 5.3.2 The carbon fibre -- 5.3.3 Aramid fibre (aromatic polyamide) -- 5.4 Advanced Polymer Composites (Using Thermosetting Polymers) -- 5.4.1 The relative properties of fibre/matrix materials -- 5.4.2 Manufacturing methods of advanced thermosetting polymer composites and their properties. -- 5.4.2.1 Introduction -- 5.4.2.2 Manual techniques -- 5.4.2.3 The semi-automated processes -- 5.4.2.4 The automated processes -- 5.4.3 Properties of advanced polymer composites -- 5.4.4 Fibre orientation -- 5.4.5 Durability -- 5.4.5.1 Methods to improve the durability of FRP composite materials in the civil infrastructure -- 5.5 Adhesives -- 5.5.1 Adhesive bonding of concrete surfaces -- 5.5.2 Adhesive bonding of steel adherents -- 5.6 Preparation of substrate surfaces for Bonding Like and Dissimilar Adherents -- 5.7 The Current Developments of Fibre Reinforced Composites in the Civil Infrastructure -- 5.7.2 External reinforcement to concrete and steel structures using FRP plate bonding -- 5.7.3 Post-tension tendons -- 5.7.4 Near surface mounted (NSM) FRP rods -- 5.7.5 FRP jacketing in confining RC members under axial compression -- 5.7.6 Internal reinforcement to concrete members -- 5.8 Miscellaneous -- References -- Chapter 6 Enhancing the Performance of Masonry Structures Richard E. Klingner -- 6.1 Introduction -- 6.2 Performance of Masonry as Building Envelope -- 6.2.1 Resist liquid water -- 6.2.2 Control water vapor -- 6.2.3 Control of the environment inside the envelope (temperature, humidity and noise) -- 6.2.3.1 Control of temperature -- 6.2.3.2 Control of humidity -- 6.2.3.3 Control of noise -- 6.2.4 Control damage from fire -- 6.2.5 Control damage from hail and wind-borne debris -- 6.2.6 Resist or transfer externally applied loads -- 6.2.7 Resist or accommodate differential movement. 6.2.8 Concluding remarks on masonry as building envelope.

Key Features:The first English-language book focusing on a variety of high-performance construction materialsProvides an overview of the scientific bases, manufacture/production process and applications for these high-performance materialsEach topic (chapter) was written by the world's leading authority in that specific area.

9789812797360


Building materials -- Research.;Composite materials -- Research.;Structural engineering -- Research.;Strength of materials.


Electronic books.

TA404.2 -- .H56 2008eb

620.1122