Advances in Chemical Physics.

Rice, Stuart A.

Advances in Chemical Physics. - 1st ed. - 1 online resource (531 pages) - Advances in Chemical Physics Ser. . - Advances in Chemical Physics Ser. .

Intro -- ADVANCES IN CHEMICAL PHYSICS -- EDITORIAL BOARD -- CONTRIBUTORS TO VOLUME 156 -- Preface to the Series -- Contents -- 1 Phase Space Approach to Solving The SchrÖdinger Equation: Thinking Inside the Box -- I Introduction -- II Theory -- A. von Neumann Basis on the Infinite Lattice -- B. Fourier Method -- C. The Periodic von Neumann Basis (pvN) -- D. Biorthogonal von Neumann Basis Set (bvN) -- E. Periodic von Neumann Basis with Biorthogonal Exchange (pvb) -- III Application to Ultrafast Pulses -- IV Applications to Quantum Mechanics -- A. Time-independent Schrödinger Equation (TISE) -- B. Time-dependent Schrödinger Equation (TDSE) -- V Applications to Audio and Image Processing -- VI Conclusions and Future Prospects -- Acknowledgments -- References -- 2 Entropy-Driven Phase Transitions In Colloids: From spheres to anisotropic particles -- I Introduction -- II Predicting Candidate Crystal Structures -- III Free-Energy Calculations -- A. Fluid Phase -- B. Crystal Phase -- C. Plastic Crystal Phases -- D. Orientationally Ordered Crystal Phases -- IV Bulk Phase Diagram and Kinetic Pathways -- A. Mapping Out Phase Diagrams -- B. Nucleation, Gelation, and Glass Transition -- V Phase Diagrams of Binary Hard-Sphere Mixtures -- VI Phase Diagrams of Anisotropic Hard Particles -- A. Dumbbells -- B. Snowman-shaped Particles -- C. Asymmetric Dumbbell Particles -- D. Spherocylinders -- E. Ellipsoids -- F. Cut-spheres -- G. Oblate Spherocylinders -- H. Cubes -- I. Superballs -- J. Bowl-shaped Particles -- VII Entropy Strikes Back Once More -- Acknowledgments -- References -- 3 Sub-Nano Clusters: The Last Frontier of Inorganic Chemistry -- I Introduction -- II Chemical Bonding Phenomena in Clusters -- A. Multiple Aromaticity and Antiaromaticity (-, -, d-) in 2D and 3D -- B. Covalency in Clusters and its Conflict with Aromaticity. C. Ionic Bonding and its Support for Stabilizing Bonding Effects -- D. Super-Atom Model -- III Cluster-Based Technologies and Opportunities -- A. New Inorganic Ligands and Building Blocks for Materials -- B. Superconductivity in Metal Clusters -- C. Cluster Motors -- D. Clusters in Catalysis -- IV Conclusions -- Acknowledgments -- References -- 4 Supercooled Liquids and Glasses by Dielectric Relaxation Spectroscopy -- I Introduction -- II Permittivity Fundamentals -- A. Steady State Equations -- B. Time-Domain Relations -- C. Frequency-Domain Relations -- D. Fluctuations and Noise -- III Response Functions -- A. The Debye Response -- B. Dispersive Response Functions -- C. Conductivity -- IV Linear Experimental Techniques -- A. Time-Domain Methods -- B. Thermally Stimulated Depolarization -- C. Frequency-Domain Methods -- D. Noise Measurements -- E. Capacitors for Permittivity Measurements -- F. Limitations from Blocking Electrodes -- V Nonlinear Experimental Techniques -- A. Large DC Fields -- B. Large AC Fields -- C. Pump-Probe Techniques -- VI Applications -- A. Static Properties -- B. Dynamic Properties: Equilibrium -- C. Dynamic Properties: Nonequilibrium -- D. Conductivity -- E. Local Detection -- F. Heterogeneous Dielectrics/Confinement -- G. Nonlinear Experiments -- H. Relation to Other Variables -- VII Concluding Remarks and Outlook -- Acknowledgments -- References -- 5 Confined Fluids: Structure, Properties and Phase Behavior -- I Introduction -- II Macroscopic Description of Nanoconfined Fluids -- A. A Simple Equation of State -- B. The Local Pressure Profile of a Nanoconfined Fluid -- C. The Hard-sphere and Perturbed Hard-sphere Fluids -- III The Density Functional Theory Description of Confined Fluids -- A. General Remarks -- B. Density Distribution and Local Pressure Tensor in a Nanoconfined Hard-sphere Fluid. C. Confined Fluids With Attractive and Repulsive Intermolecular Interactions -- IV Structure and Phase Behavior in Confined Colloid Suspensions -- A. Quasi-One-Dimensional Systems -- B. Two-Dimensional Systems: General Remarks -- C. One-Layer Quasi-Two-Dimensional Systems: Some Details -- D. Multi-Layer Quasi-Two-Dimensional Systems: Some Details -- E. A 2D Model Molecular System -- V Nanoconfined Water -- A. Nanoconfined Water Between Smooth Walls -- B. Nanoconfined Water Between Structured Walls -- C. Water Confined in Carbon Nanotubes -- D. Does Water Confined in a SWCNT Exhibit a Solid-Liquid Critical Point? -- E. Water Confined by Hydrophilic Walls -- VI Epilogue -- References -- 6 Theories and Quantum Chemical Calculations of Linear and Sum-Frequency Generation Spectroscopies, and Intramolecular Vibrational Redistribution and Density Matrix Treatment of Ultrafast Dynamics -- I Introduction -- II Recent Developments of Spectroscopies and Dynamics of Molecules -- A. Anharmonic Effect of S1 ↔ S0 of Pyridine -- B. Anharmonic Effect for S1 ↔ S0 of Pyrimidine -- C. Radiative and Nonradiative S1 ↔ S0 of Fluorescence -- D. Spectroscopies and Dynamics of Pyrazine -- III Theory and Applications of SFG -- A. Introduction -- B. Theory-Susceptibility Method -- C. Vibrational Sum-Frequency Generation -- D. Electronic Sum-Frequency Generation -- E. Applications -- IV Intramolecular Vibrational Redistribution -- A. Introduction -- B. Computational Details -- C. Intramolecular Vibrational Energy Transfer Theory (D∗A→DA∗) -- D. Ab Initio Methods -- E. Results and Discussions -- F. Water Clusters -- V Ultrafast Dynamics and Density Matrix Method -- A. Introduction -- B. Bixon-Jortner Model -- C. General Model -- References -- 7 On The Kramers Very Low Damping Escape Rate for Point Particles and Classical Spins -- I Introduction. II The Contribution of Kramers to Escape RateTheory -- A. IHD or Spatially-Controlled Diffusion Escape Rate -- B. VLD or Energy-Controlled Diffusion Escape Rate -- C. Connection of the VLD Rate with the High Frequency Resonance Absorption -- D. Connection of the VLD Rate with Mel'nikov's Solution of the Kramers Turnover Problem -- III Energy-Controlled Diffusion Equation for Particles with Separable and Additive Hamiltonians -- A. Mean Energy Loss per Cycle of a Lightly Damped Particle -- B. The Lightly Damped Langevin Equation -- C. The Fokker-Planck Equation -- D. Reducing the Fokker-Planck Equation to a One-Dimensional Equation in the Energy -- E. Very Low Damping Escape Rate -- F. Comparison of VLD Escape Rate with Longest Relaxation Time Solutions -- IV Energy-Controlled Diffusion of Classical Spins -- A. Magnetization Evolution Equations: Brown's Langevin and Fokker-Planck Equations -- B. Undamped Motion of Classical Spins -- C. Mean Energy Loss per Cycle of a Stoner-Wohlfarth Orbit -- D. Stochastic Motion of Classical Spins in the VLD Limit -- E. Fokker-Planck Equation -- F. Energy Diffusion Equation -- G. Very Low Damping Escape Rate -- H. Reversal Time and Escape Rate for Biaxial and Uniaxial Anisotropies -- V Conclusion -- Appendix A: Longest Relaxation Time for a Double-Well Potential, Eq. (13), in the VLD Limit -- Appendix B: Undamped Limit for Biaxial Anisotropy -- References -- Author Index -- Subject Index -- EULA.

Advances in Chemical Physics is the only series of volumes available that explores the cutting edge of research in chemical physics. This is the only series of volumes available that presents the cutting edge of research in chemical physics. Includes contributions from experts in this field of research. Contains a representative cross-section of research that questions established thinking on chemical solutions. Structured with an editorial framework that makes the book an excellent supplement to an advanced graduate class in physical chemistry or chemical physics.


Chemistry, Physical and theoretical.

Electronic books.

QD453.3 -- .A38 2015eb